1

I tried a modification of DF to RDD for a table containing 25 columns. Thereafter I came to know that Scala (until 2.11.8) has a limitation of a max of 22 tuples that could be used.

val rdd = sc.textFile("/user/hive/warehouse/myDB.db/myTable/")
rdd: org.apache.spark.rdd.RDD[String] = /user/hive/warehouse/myDB.db/myTable/ MapPartitionsRDD[3] at textFile at <console>:24

Sample Data:

[2017-02-26, 100052-ACC, 100052, 3260, 1005, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]

Accessing each column:

val rdd3 = rdd.map(elements => {
val el = elements.split(",")
(el(0).substring(1,11).toString, el(1).toString ,el(2).toInt, el(3).toInt, el(4).toInt, el(5).sum.toDouble, el(6).sum.toDouble, el(7).sum.toDouble, el(8).sum.toDouble, el(9).sum.toDouble, el(10).sum.toDouble, el(11).sum.toDouble, el(12).sum.toDouble, el(13).sum.toDouble, el(14).sum.toDouble, el(15).sum.toDouble, el(15).sum.toDouble, el(17).sum.toDouble, el(18).sum.toDouble, el(19).sum.toDouble, el(20).sum.toDouble, el(21).sum.toDouble, el(22).sum.toDouble, el(23).sum.toDouble, el(24).sum.toDouble)
}
)

It throws an error:

<console>:1: error: too many elements for tuple: 26, allowed: 22

It's a bug in Scala (https://issues.scala-lang.org/browse/SI-9572). So I created a case class to go ahead with the problem.

case class HandleMaxTuple(col1:String, col2:String, col3: Int, col4: Int, col5: Int, col6: Double, col7: Double, col8: Double, col9: Double, col10: Double, col11: Double, col12: Double, col13: Double, col14: Double, col15: Double, col16: Double, col17: Double, col18: Double, col19: Double, col20: Double, col21: Double, col22: Double, col23: Double, col24: Double, col25:Double)

Thus the new rdd definition becomes:

val rdd3 = rdd.map(elements => {
val el = elements.split(",")
(HandleMaxTuple(el(0).substring(1,11).toString, el(1).toString,el(2).toInt, el(3).toInt, el(4).toInt, el(5).toDouble, el(6).toDouble, el(7).toDouble, el(8).toDouble, el(9).toDouble, el(10).toDouble, el(11).toDouble, el(12).toDouble, el(13).toDouble, el(14).toDouble, el(15).toDouble, el(15).toDouble, el(17).toDouble, el(18).toDouble, el(19).toDouble, el(20).toDouble, el(21).toDouble, el(22).toDouble, el(23).toDouble, el(24).toDouble))
}
)

However, when I try to read the contents of RDD:

rdd.take(2).foreach(println)

it throws me an exception of java.lang.ArrayIndexOutOfBoundsException:

Error Stack:

Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
  at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1354)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
  at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
  at org.apache.spark.rdd.RDD.take(RDD.scala:1327)
  ... 48 elided
Caused by: java.lang.ArrayIndexOutOfBoundsException: 1

Any idea why it's happening? Any workarounds?

knowone
  • 840
  • 2
  • 16
  • 37

1 Answers1

1

I have tried to do exactly same as per your data using case class and I see two problems. First look at the answer:

package com.scalaspark.stackoverflow
import org.apache.spark.sql.SparkSession

object StackOverFlow {
  def main(args: Array[String]): Unit = {
    
    def parser(lines : String): HandleMaxTuple = {
      val fileds = lines.split(",")
      val c1 = fileds(0).substring(1,10).toString()
      val c2 = fileds(1).toString()
      val c3 = fileds(2).replaceAll("\\s","").toInt
      val c4 = fileds(3).replaceAll("\\s","").toInt
      val c5 = fileds(4).replaceAll("\\s","").toInt
      val c6 = fileds(5).replaceAll("\\s","").toDouble
      val c7 = fileds(6).replaceAll("\\s","").toDouble
      val c8 = fileds(7).replaceAll("\\s","").toDouble
      val c9 = fileds(8).replaceAll("\\s","").toDouble
      val c10 = fileds(9).replaceAll("\\s","").toDouble
      val c11 = fileds(10).replaceAll("\\s","").toDouble
      val c12 = fileds(11).replaceAll("\\s","").toDouble
      val c13 = fileds(12).replaceAll("\\s","").toDouble
      val c14 = fileds(13).replaceAll("\\s","").toDouble
      val c15 = fileds(14).replaceAll("\\s","").toDouble
      val c16 = fileds(15).replaceAll("\\s","").toDouble
      val c17 = fileds(16).replaceAll("\\s","").toDouble
      val c18 = fileds(17).replaceAll("\\s","").toDouble
      val c19 = fileds(18).replaceAll("\\s","").toDouble
      val c20 = fileds(19).replaceAll("\\s","").toDouble
      val c21 = fileds(20).replaceAll("\\s","").toDouble
      val c22 = fileds(21).replaceAll("\\s","").toDouble
      val c23 = fileds(22).replaceAll("\\s","").toDouble
      val c24 = fileds(23).replaceAll("\\s","").toDouble
      val c25 = fileds(24).replaceAll("\\s","").toDouble
   
      val handleMaxTuple : HandleMaxTuple = HandleMaxTuple(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19,c20,c21,c22,c23,c24,c25)
      return handleMaxTuple 
    }
    val spark = SparkSession
                .builder()
                .appName("number of tuples limit in RDD")
                .master("local[*]")
                .getOrCreate()
                
    val lines = spark.sparkContext.textFile("C:\\Users\\rajnish.kumar\\Desktop\\sampleData.txt", 1)
    lines.foreach(println)
    val parseddata = lines.map(parser)
    parseddata.foreach(println)
  }
  
  case class HandleMaxTuple(col1:String, col2:String, col3: Int, col4: Int, col5: Int, col6: Double, col7: Double, col8: Double, col9: Double, col10: Double, col11: Double, col12: Double, col13: Double, col14: Double, col15: Double, col16: Double, col17: Double, col18: Double, col19: Double, col20: Double, col21: Double, col22: Double, col23: Double, col24: Double, col25:Double)
}

First problem is that for el(0) you are using substring() which as per Java doc should be:

String substring(int beginIndex, int endIndex)
Returns a new string that is a substring of this string. 

When I go with el(0).substring(1,11) I get java.lang.StringIndexOutOfBoundsException: String index out of range: 11.

So go with el(0).substring(0,10) (as index starts from zero not from 1).

Second problem you are using toInt and doubles for some fields conversion but as I can see all of them contains a space in starting, so, beware that this can fail with a NumberFormatException just like it does in Java, like this:

scala> val i = "foo".toInt
java.lang.NumberFormatException: For input string: "foo"

For more info go to https://alvinalexander.com/scala/how-cast-string-to-int-in-scala-string-int-conversion. So to correct it I have used .replaceAll("\\s","") which removes all spaces just before the numbers and then converted them to int and doubles.

When you run above sample you will get output as:

HandleMaxTuple(2017-02-26, 100052-ACC,100052,3260,1005,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
halfer
  • 19,824
  • 17
  • 99
  • 186
Rajnish Kumar
  • 2,828
  • 5
  • 25
  • 39
  • Thanks for the details. Regarding the first problem, the reason I use `substring` is because the rdd that's created, it gives the first value as `[2017-02-26`, notice the `[` in the beginning. So to select only the date value, I've to use `substring`. The second problem could be an issue, yeah. But because the numbers are generated implicitly by RDD itself, I don't have control over them. But I'll try to use a replace before calling in the function & update here. – knowone Mar 27 '18 at 19:59
  • Hi, I checked the data in multiple ways but the data seems to be proper & even the conversions in RDD above are done proper. Here are some excerpts: – knowone Mar 28 '18 at 05:41
  • `rdd.take(1) res45: Array[String] = Array(201735?100102-DS?100102?D3?1198?1005?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?-34.37?-45.78?-50.4?-7?-7?-7?-34.37?0?0?0?0?0?0?0?-34.37?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?0?2017-02-26)` – knowone Mar 28 '18 at 05:42
  • `rdd.take(1).foreach(println)` `201735100102-DS100102DS119810050000000000000000000000000000000000-34.37-45.78-50.4-7-7-7-34.370000000-34.370000000000000000002017-02-26` – knowone Mar 28 '18 at 05:43
  • @ knowone so does it solved your problem ?or if still the same issue can you provide me the spark and scala version so that i can work over them and see if i can help you – Rajnish Kumar Mar 28 '18 at 07:17
  • It didn't solve my problem but I removed it. Had to map the actual table structure with the conversion I was doing above in the RDD & found out that it wasn't mapped properly. There's some other problem even after resolving it, but that actually isn't related with the problem statement of this question so I can't put it here. – knowone Mar 28 '18 at 07:30