I want to estimate means and totals from a stratified sampling design in which single stage cluster sampling was used in each stratum. I believe I have the design properly specified using the svydesign()
function of the survey package. But I'm not sure how to correctly specify the stratum weights.
Example code is shown below. I provide unadjusted stratum weights using the weights=
argument. I expected that the estimate and the SE from svytotal()
would be equal to the sum of the stratum weights (70, in the example) times the estimate and SE from svymean()
. Instead the estimates differ by a factor of 530 (which is the sum of the stratum weights over all of the elements in the counts data) and the SEs differ by a factor of 898 (???). My questions are (1) how can I provide my 3 stratum weights to svydesign()
in a way that it understands, and (2) why aren't the estimates and SEs from svytotal()
and svymean()
differing by the same factor?
library(survey)
# example data from a stratified sampling design in which
# single stage cluster sampling is used in each stratum
counts <- data.frame(
Stratum=rep(c("A", "B", "C"), c(5, 8, 8)),
Cluster=rep(1:8, c(3, 2, 3, 2, 3, 2, 3, 3)),
Element=c(1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3),
Count = 1:21
)
# stratum weights
weights <- data.frame(
Stratum=c("A", "B", "C"),
W=c(10, 20, 40)
)
# combine counts and weights
both <- merge(counts, weights)
# estimate mean and total count
D <- svydesign(id=~Cluster, strata=~Stratum, weights=~W, data=both)
a <- svymean(~Count, D)
b <- svytotal(~Count, D)
sum(weights$W) # 70
sum(both$W) # 530
coef(b)/coef(a) # 530
SE(b)/SE(a) # 898.4308
First update
I'm adding a diagram to help explain my design. The entire population is a lake with known area (70 ha in this example). The strata have known areas, too (10, 20, and 40 ha). The number of clusters allocated to each stratum was not proportional. Also, the clusters are tiny relative to the number that could possibly be sampled, so the finite population correction is FPC = 1.
I want to calculate an overall mean and SE on a per unit area basis and a total that is equal to 70 times this mean and SE.
Second update
I wrote the code to do the calculations from scratch. I get a total estimate of 920 with se 61.6.
library(survey)
library(tidyverse)
# example data from a stratified sampling design in which
# single stage cluster sampling is used in each stratum
counts <- data.frame(
Stratum=rep(c("A", "B", "C"), c(5, 8, 8)),
Cluster=rep(1:8, c(3, 2, 3, 2, 3, 2, 3, 3)),
Element=c(1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3),
Count = c(5:1, 6:21)
)
# stratum weights
areas <- data.frame(
Stratum=c("A", "B", "C"),
A_h=c(10, 20, 40)
)
# calculate cluster means
step1 <- counts %>%
group_by(Stratum, Cluster) %>%
summarise(P_hi = sum(Count), m_hi=n())
step2 <- step1 %>%
group_by(Stratum) %>%
summarise(
ybar_h = sum(P_hi) / sum(m_hi),
n_h = n(),
sh.numerator = sum((P_hi - ybar_h*m_hi)^2),
mbar_h = mean(m_hi)
) %>%
mutate(
S_ybar_h = 1 / mbar_h * sqrt( sh.numerator / (n_h * (n_h-1)) )
)
# now expand up to strata
step3 <- step2 %>%
left_join(areas) %>%
mutate(
W_h = A_h / sum(A_h)
) %>%
summarise(
A = sum(A_h),
ybar_strat = sum(W_h * ybar_h),
S_ybar_strat = sum(W_h * S_ybar_h / sqrt(n_h))
) %>%
mutate(
tot = A * ybar_strat,
S_tot = A * S_ybar_strat
)
step2
step3
This gives the following output:
> step2
# A tibble: 3 x 6
Stratum ybar_h n_h sh.numerator mbar_h S_ybar_h
<fctr> <dbl> <int> <dbl> <dbl> <dbl>
1 A 3.0 2 18.0 2.500000 1.200000
2 B 9.5 3 112.5 2.666667 1.623798
3 C 17.5 3 94.5 2.666667 1.488235
> step3
# A tibble: 1 x 5
A ybar_strat S_ybar_strat tot S_tot
<dbl> <dbl> <dbl> <dbl> <dbl>
1 70 13.14286 0.8800657 920 61.6046