I'm trying to fit the lppl model to KLSE index to predict the most probable crash time. Many papers suggested tabuSearch to identify the initial value for non-linear parameters but none of them publish their code. I have tried to fit the mentioned index with the help of NLS And Log-Periodic Power Law (LPPL) in R. But the obtained error and p values are not significant. I believe that the initial values are not accurate. Can anyone help me on how to find the proper initial values?
library(tseries)
library(zoo)
ts<-get.hist.quote(instrument="^KLSE",start="2003-04-18",end="2008-01-30",quote="Close",provider="yahoo",origin="1970-01-01",compression="d",retclass="zoo")
df<-data.frame(ts)
df<-data.frame(Date=as.Date(rownames(df)),Y=df$Close)
df<-df[!is.na(df$Y),]
library(minpack.lm)
library(ggplot2)
df$days<-as.numeric(df$Date-df[1,]$Date)
f<-function(pars,xx){pars$a + (pars$tc - xx)^pars$m *(pars$b+ pars$c * cos(pars$omega*log(pars$tc - xx) + pars$phi))}
resids<-function(p,observed,xx){df$Y-f(p,xx)}
nls.out <- nls.lm(par=list(a=600,b=-266,tc=3000, m=.5,omega=7.8,phi=-4,c=-14),fn = resids, observed = df$Y, xx = df$days, control= nls.lm.control (maxiter =1024, ftol=1e-6, maxfev=1e6))
par<-nls.out$par
nls.final<-nls(Y~(a+(tc-days)^m*(b+c*cos(omega*log(tc-days)+phi))),data=df,start=par,algorithm="plinear",control=nls.control(maxiter=10024,minFactor=1e-8))
summary(nls.final)