Good day.
I am 3 month old in R and R-Studio but am getting the hang of things. I am implementing a SOM solution with 38k records/observations using Kohonen SuperSOM following Self-Organising Maps for Customer Segmentation using R.
- My data have no missing values but almost 60 columns many of them are dummyVars (I received this data in this format)
- I have removed the ONE char Column (URL)
- My Y column (as I understand it) is "shares" (How many times it was shared)
- My data only consist of numerical data (dummyVars are of course 1 or 0)
- I have Centered and Scaled my data (entire dataFrame)
- As per the example I followed I dod convert the entire DF to a matrix
My problem is that my SOM takes ages to train even with multi core processing and my progress graph does not reach a nice flat"ish" plateau, it does come nicely down but still is very erratic, all my other graphs are extremely high in population and there are no nice clustering. I have even tried a 500 iteration with a 100x100 grid ;-(
I think /guess it is because of the huge amount of columns including mostly dummyVars e.g. dayOfWeek.Monday, dayOfWeek.Tuesday, category.LifeStile, category.Computers, etc.
What am I to do?
Should I convert the dummyVars back into another format, How and Why?
Please do not just give me a section of code as I would like to understand why I need to do What.
Thanx