0

If you check my github, I have successfully implemented CNN, KNN for classifying signal faults. For that, I have taken the signal with little preprocessing for dimensionality reduction and provided it to the network, using its class information I trained the network, later the trained network is tested with testing samples to determine the class and computed the accuracy.

My question here how do I input the text information to CNN or any other network. For inputs, I took the Twitter database from kaggle, I have selected 2 columns which have names and gender information. I have gone through some algorithms which classify gender based on their blog data. I wasn't clear how I implement to my data (In my case, if I just want to classify using only names alone).

In some examples, which I understood I saw computing sparse matrix for the text, but for 20,000 samples the sparse matrix is huge to give as input. I have no problem in implementing the CNN architectures(I want to implement because no features are required) or any other network. I am stuck here, how to input data to the network. What kind of conversations can I make so that I take the names and gender information can be considered to train the network?

If my method of thinking is wrong please provide me suggestion which algorithm is the best way. Deep learning or any other methods are ok!

Community
  • 1
  • 1
Raady
  • 1,686
  • 5
  • 22
  • 46

1 Answers1

2

You could use character-level embeddings (i.e. your input classes are the different characters, so 'a' is class 1, 'b' is class 2 etc..). One-hot encoding the classes and then passing them through an embedding layer will yield unique representations for each character. A string can then be treated as a character-sequence (or equally a vector-sequence), which can be used as an input for either a recurrent or convolutional network. If you feel like reading, this paper by Kim et al. will provide you all the necessary theoretical backbone.

KonstantinosKokos
  • 3,369
  • 1
  • 11
  • 21