I'm building a simple neural network that takes 3 values and gives 2 outputs.
I'm getting an accuracy of 67.5% and an average cost of 0.05
I have a training dataset of 1000 examples and 500 testing examples. I plan on making a larger dataset in the near future.
A little while ago I managed to get an accuracy of about 82% and sometimes a bit higher, but the cost was quite high.
I've been experimenting with adding another layer which is currently in the model and that is the reason I have got the loss under 1.0
I'm not sure what is going wrong, I'm new to Tensorflow and NNs in general.
Here is my code:
import tensorflow as tf
import numpy as np
import sys
sys.path.insert(0, '.../Dataset/Testing/')
sys.path.insert(0, '.../Dataset/Training/')
#other files
from TestDataNormaliser import *
from TrainDataNormaliser import *
learning_rate = 0.01
trainingIteration = 10
batchSize = 100
displayStep = 1
x = tf.placeholder("float", [None, 3])
y = tf.placeholder("float", [None, 2])
#layer 1
w1 = tf.Variable(tf.truncated_normal([3, 4], stddev=0.1))
b1 = tf.Variable(tf.zeros([4]))
y1 = tf.matmul(x, w1) + b1
#layer 2
w2 = tf.Variable(tf.truncated_normal([4, 4], stddev=0.1))
b2 = tf.Variable(tf.zeros([4]))
#y2 = tf.nn.sigmoid(tf.matmul(y1, w2) + b2)
y2 = tf.matmul(y1, w2) + b2
w3 = tf.Variable(tf.truncated_normal([4, 2], stddev=0.1))
b3 = tf.Variable(tf.zeros([2]))
y3 = tf.nn.sigmoid(tf.matmul(y2, w3) + b3) #sigmoid
#output
#wO = tf.Variable(tf.truncated_normal([2, 2], stddev=0.1))
#bO = tf.Variable(tf.zeros([2]))
a = y3 #tf.nn.softmax(tf.matmul(y2, wO) + bO) #y2
a_ = tf.placeholder("float", [None, 2])
#cost function
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a)))
#cross_entropy = -tf.reduce_sum(y*tf.log(a))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
#training
init = tf.global_variables_initializer() #initialises tensorflow
with tf.Session() as sess:
sess.run(init) #runs the initialiser
writer = tf.summary.FileWriter(".../Logs")
writer.add_graph(sess.graph)
merged_summary = tf.summary.merge_all()
for iteration in range(trainingIteration):
avg_cost = 0
totalBatch = int(len(trainArrayValues)/batchSize) #1000/100
#totalBatch = 10
for i in range(batchSize):
start = i
end = i + batchSize #100
xBatch = trainArrayValues[start:end]
yBatch = trainArrayLabels[start:end]
#feeding training data
sess.run(optimizer, feed_dict={x: xBatch, y: yBatch})
i += batchSize
avg_cost += sess.run(cross_entropy, feed_dict={x: xBatch, y: yBatch})/totalBatch
if iteration % displayStep == 0:
print("Iteration:", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))
#
print("Training complete")
predictions = tf.equal(tf.argmax(a, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
print("Accuracy:", accuracy.eval({x: testArrayValues, y: testArrayLabels}))