The classification task is based on a image and a scalar value.
If I encoded the scalar value as image pixels with that value (or a normalized version of the same) and append it as another layer in the input image, I would be wasting convolutional computation cycles over the encoding to get this information into the network.
On the other hand, I can send this as another neuron to the layer where flattening of conved feature maps occurs. Another option would be adding just before the output layer. (But how do I implement such a network in Keras or tensorflow?)
Which is the best method to send in scalar values?
PS: Although this question is not specific to any framework, Keras examples would be great in a way that they are simple enough for most people to understand... Links to blogs addressing the same are welcome too.