0

I'm using recurrent neural networks to train a model to translate sample english sentences such as "fetch all employee data" into sql such as "SELECT * FROM EMPLOYEE". Right now my program takes 100 epochs of training time but translates all the inputs the same. Required libraries are tensorflow and keras. Could someone take a look at my program to help me generate the correct translation?

Here is my code in python: https://github.com/Kashdog/engsqlnmt

here's my code:

from __future__ import print_function

from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np
import h5py

batch_size = 64  # Batch size for training.
epochs = 200  # Number of epochs to train for.
latent_dim = 256  # Latent dimensionality of the encoding space.
num_samples = 10000  # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'eng-sql/sql.txt'

# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, 'r', encoding='utf-8') as f:
    lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
    print(line.split('^'))
    input_text, target_text = line.split('^')
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = '\t' + target_text + '\n'
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)

input_token_index = dict(
    [(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
    [(char, i) for i, char in enumerate(target_characters)])

encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')

for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.

# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)
# Save model
model.save('s2s.h5')

# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states

# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)

decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
    [decoder_inputs] + decoder_states_inputs,
    [decoder_outputs] + decoder_states)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
    (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
    (i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict(
            [target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or
           len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.

        # Update states
        states_value = [h, c]

    return decoded_sentence


for seq_index in range(39):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index: seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print('-')
    print(seq_index)
    print('Input sentence:', input_texts[seq_index])
    print('Decoded sentence:', decoded_sentence)
print('testing')
encoder_test_data = np.zeros(
    (2,max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
test_seq = "fetch total employee data"
print(test_seq)
#encoder_test_data 
for t, char in enumerate(test_seq):
        encoder_test_data[1,t, input_token_index[char]] = 1.
#input_seq = 'fetch all customer data'
decoded_sentence = decode_sequence(encoder_test_data[1:2])
print('Decoded test sentence:', decoded_sentence)

and my data file(sql.txt) is:

fetch all customer data^SELECT * FROM CUSTOMER
find all customer data^SELECT * FROM CUSTOMER
retrieve all customer data^SELECT * FROM CUSTOMER
get all customer data^SELECT * FROM CUSTOMER
download all customer data^SELECT * FROM CUSTOMER
select all customer data^SELECT * FROM CUSTOMER
obtain all employee info^SELECT * FROM EMPLOYEE
show all employee info^SELECT * FROM EMPLOYEE
display all employee info^SELECT * FROM EMPLOYEE
Iman Mirzadeh
  • 12,710
  • 2
  • 40
  • 44
feanaro
  • 1
  • 3
  • Hi, welcome to stack overflow. You should distill your problem into a minimal example that you can post in a question. People won't spend the time necessary to look through external code. Also, please try to ask a specific question. Your question is extremely broad and essentially translates into: can you do some development work for me. Let us know what you've tried, what failed, where in the code it failed, and what you expected. – David Parks Mar 09 '18 at 21:22

1 Answers1

1

TLDR; Your dataset is very small, biased and lacks the variety needed for RNNs. So you need 'some tricks' to make your code work.

The problem is you didn't shuffle your input data. (The fully working source code is here)

If you look to your sql.txt file, you'll notice the dataset is sorted by customer and employee examples so it makes harder for your network to learn and furthermore, your dataset is biased [30 samples of customer and 70 samples of employee]

Also, your hidden_size was a little big for this small dataset (~100 samples) so I made some changes:

batch_size = 32  # Batch size for training.
epochs = 300  # Number of epochs to train for.
latent_dim = 32  # Latent dimensionality of the encoding space.

Here's the shuffle code:

import random  
all_data = list(zip(input_texts, target_texts))
random.shuffle(all_data)
for i, (input_text, target_text) in enumerate(all_data):
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.

so here's the result (I think you'll need more data and a not-biased dataset):

-
34
Input sentence: show all client information
Decoded sentence: SELECT * FROM CUSTOMER

-
35
Input sentence: display all client information
Decoded sentence: SELECT * FROM CUSTOMER

-
36
Input sentence: fetch me all client information
Decoded sentence: SELECT * FROM CUSTOMER

-
37
Input sentence: get me all client information
Decoded sentence: SELECT * FROM CUSTOMER

-
38
Input sentence: get me all employee information
Decoded sentence: SELECT * FROM EMPLOYEE

testing
fetch total employee data
Decoded test sentence: SELECT * FROM EMPLOYEE
Iman Mirzadeh
  • 12,710
  • 2
  • 40
  • 44