With little experience in color spaces, I used the following code to convert BGR image (array of unsigned characters where each channel ranges from 0 to 255) to lab color space:
double F(double input) // function f(...), which is used for defining L, a and b changes within [4/29,1]
{
if (input > 0.008856)
return (pow(input, 0.333333333)); // maximum 1
else
return ((841/108)*input + 4/29); //841/108 = 29*29/36*16
}
// RGB to XYZ
void RGBtoXYZ(uchar R, uchar G, uchar B, double &X, double &Y, double &Z)
{
// RGB Working Space: sRGB
// Reference White: D65
X = 0.412453*R + 0.357580*G + 0.189423*B; // maximum value = 0.959456 * 255 = 244.66128
Y = 0.212671*R + 0.715160*G + 0.072169*B; // maximum value = 1 * 255 = 255
Z = 0.019334*R + 0.119193*G + 0.950227*B; // maximum value = 1.088754 * 255 = 277.63227
}
// XYZ to CIELab
void XYZtoLab(double X, double Y, double Z, double &L, double &a, double &b)
{
const double Xo = 244.66128; // reference white
const double Yo = 255.0;
const double Zo = 277.63227;
L = 116 * F(Y / Yo) - 16; // maximum L = 100
a = 500 * (F(X / Xo) - F(Y / Yo)); // maximum
b = 200 * (F(Y / Yo) - F(Z / Zo));
}
// RGB to CIELab
void RGBtoLab(double R, double G, double B, double &L, double &a, double &b)
{
double X, Y, Z;
RGBtoXYZ(R, G, B, X, Y, Z);
XYZtoLab(X, Y, Z, L, a, b);
}
I have re-converted the resulting lab image to BGR (using cvtcolor) to display it using OpenCV using the following code (I don't want to do the conversion using OpenCV, I have just used it to display the results. Basically I wanted to understand how color space conversion works):
// Lchannel, Achannel, Bchannel are arrays of type double
cv::Mat temp64bitL(height, width, CV_64FC1, Lchannel);
cv::Mat temp32bitL;
temp64bitL.convertTo(temp32bitL, CV_32F);
cv::Mat temp64bitA(height, width, CV_64FC1, Achannel);
cv::Mat temp32bitA;
temp64bitA.convertTo(temp32bitA, CV_32F);
cv::Mat temp64bitB(height, width, CV_64FC1, Bchannel);
cv::Mat temp32bitB;
temp64bitB.convertTo(temp32bitB, CV_32F);
cv::Mat chan[3] = {
temp32bitL, temp32bitA, temp32bitB
};
cv::Mat merged;
cv::merge(chan, 3, merged);
cv::Mat BGRImage;
cv::cvtColor(merged, BGRImage, CV_Lab2BGR, 3);
However, the computed image is different from the original image. is that due to a problem in the code?