I have built a gensim Doc2vec model. Let's call it doc2vec. Now I want to find the most relevant words to a given document according to my doc2vec model.
For example, I have a document about "java" with the tag "doc_about_java". When I ask for similar documents, I get documents about other programming languages and topics related to java. So my document model works well.
Now I want to find the most relevant words to "doc_about_java".
I follow the solution from the closed question How to find most similar terms/words of a document in doc2vec? and it gives me seemingly random words, the word "java" is not even among the first 100 similar words:
docvec = doc2vec.docvecs['doc_about_java']
print doc2vec.most_similar(positive=[docvec], topn=100)
I also tried like this:
print doc2vec.wv.similar_by_vector(doc2vec["doc_about_java"])
but it didn't change anything. How can I find the most similar words to a given document?