This is indeed an interesting question, here is what happens precisely in your hardware. This answer gives the exact calculations with the precision of IEEE double
precision floats, i.e. 52 bits mantissa plus one implicit bit. For details on the representation, see the wikipedia article.
Ok, so you first define some variables:
double Vmax = 2.9;
double Vmin = 1.4;
double step = 0.1;
The respective values in binary will be
Vmax = 10.111001100110011001100110011001100110011001100110011
Vmin = 1.0110011001100110011001100110011001100110011001100110
step = .00011001100110011001100110011001100110011001100110011010
If you count the bits, you will see that I have given the first bit that is set plus 52 bits to the right. This is exactly the precision at which your computer stores a double
. Note that the value of step
has been rounded up.
Now you do some math on these numbers. The first operation, the subtraction, results in the precise result:
10.111001100110011001100110011001100110011001100110011
- 1.0110011001100110011001100110011001100110011001100110
--------------------------------------------------------
1.1000000000000000000000000000000000000000000000000000
Then you divide by step
, which has been rounded up by your compiler:
1.1000000000000000000000000000000000000000000000000000
/ .00011001100110011001100110011001100110011001100110011010
--------------------------------------------------------
1110.1111111111111111111111111111111111111111111111111100001111111111111
Due to the rounding of step
, the result is a tad below 15
. Unlike before, I have not rounded immediately, because that is precisely where the interesting stuff happens: Your CPU can indeed store floating point numbers of greater precision than a double
, so rounding does not take place immediately.
So, when you convert the result of (Vmax-Vmin)/step
directly to an int
, your CPU simply cuts off the bits after the fractional point (this is how the implicit double -> int
conversion is defined by the language standards):
1110.1111111111111111111111111111111111111111111111111100001111111111111
cutoff to int: 1110
However, if you first store the result in a variable of type double, rounding takes place:
1110.1111111111111111111111111111111111111111111111111100001111111111111
rounded: 1111.0000000000000000000000000000000000000000000000000
cutoff to int: 1111
And this is precisely the result you got.