I am a bit new to gensim and right now I am trying to solve the problem which involves using the doc2vec embeddings in keras. I wasn't able to find existing implementation of doc2vec in keras - as far as I see in all examples I found so far everyone just uses the gensim to get the document embeddings.
Once I trained my doc2vec model in gensim I need to export embeddings weights from genim into keras somehow and it is not really clear on how to do that. I see that
model.syn0
Supposedly gives the word2vec embedding weights (according to this). But it is unclear how to do the same export for document embeddings. Any advise?
I know that in general I can just get the embeddings for each document directly from gensim model but I want to fine-tune the embedding layer in keras later on, since doc embeddings will be used as a part of a larger task hence they might be fine-tuned a bit.