I need to create a plot in R of the following eigenvalues: 2.2928, 0.401, 0.1322, 0.0594, 0.0406, 0.0288, 0.025 at Principal Components 1-7. I used the following dataset:
Chu_data = as.matrix(read.table(file="http://epiphanet.uth.tmc.edu/preds/f11/Chu_data.csv", sep = ","))
library(matrixStats)
and transformed it with the following command:
Chu_data2 = Chu_data * -1
I have already done the following commands:
colMeans(Chu_data2)
## V1 V2 V3 V4 V5 V6
## -0.11900458 -0.21401111 -0.09612128 -0.11873978 -0.00745832 -0.03254005
## V7
## -0.02472377
colMedians(Chu_data2)
## [1] -0.12 -0.18 -0.10 -0.17 -0.10 -0.10 -0.13
colVars(Chu_data2)
## [1] 0.02940187 0.36919574 0.26928803 0.42775589 0.73665904 0.55204203
## [7] 0.59568623
pc = prcomp(Chu_data2)
summary(pc)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 1.5143 0.6333 0.36356 0.24374 0.20140 0.16983
## Proportion of Variance 0.7694 0.1346 0.04435 0.01994 0.01361 0.00968
## Cumulative Proportion 0.7694 0.9040 0.94837 0.96831 0.98192 0.99160
## PC7
## Standard deviation 0.1582
## Proportion of Variance 0.0084
## Cumulative Proportion 1.0000
eigenvals <- pc$sdev^2
eigenvals
## [1] 2.29299111 0.40101764 0.13217381 0.05940873 0.04056253 0.02884208
[7] 0.02503294
And I created the following covariance matrix:
> M3 = t(Chu_data2) %*% Chu_data2
> M3
V1 V2 V3 V4 V5 V6 V7
V1 266.4949 167.9723 66.944 35.6704 -87.9778 -24.5144 4.2718
V2 167.9723 2538.5794 1501.269 1311.2387 1415.1033 1005.0506 954.0424
V3 66.9440 1501.2686 1703.761 1595.5595 1703.0130 1235.2951 1120.9957
V4 35.6704 1311.2387 1595.560 2702.8413 3097.8469 2448.1094 2349.3759
V5 -87.9778 1415.1033 1703.013 3097.8469 4506.4837 3637.6371 3541.8690
V6 -24.5144 1005.0506 1235.295 2448.1094 3637.6371 3383.3192 3236.6570
V7 4.2718 954.0424 1120.996 2349.3759 3541.8690 3236.6570 3647.5524
> M4 = M3 / 6117
> M4
V1 V2 V3 V4 V5 V6
V1 0.0435662743 0.02745991 0.01094393 0.005831355 -0.01438251 -0.004007585
V2 0.0274599150 0.41500399 0.24542563 0.214359768 0.23133943 0.164304496
V3 0.0109439268 0.24542563 0.27852884 0.260840199 0.27840657 0.201944597
V4 0.0058313552 0.21435977 0.26084020 0.441857332 0.50643239 0.400214059
V5 -0.0143825078 0.23133943 0.27840657 0.506432385 0.73671468 0.594676655
V6 -0.0040075854 0.16430450 0.20194460 0.400214059 0.59467666 0.553101063
V7 0.0006983489 0.15596573 0.18325906 0.384073222 0.57902060 0.529124898
V7
V1 0.0006983489
V2 0.1559657348
V3 0.1832590649
V4 0.3840732222
V5 0.5790205983
V6 0.5291248978
V7 0.5962975969
I need to recreate the graph that I have attached by using the following code: Plot of eigenvalues
x = as.vector(M2)
y = .72263 / 0.69123 * x
plot(M2, type = "p", col = "orange")
lines(x,y, type = "l", col = "red", new = "F")
I am very confused and have tried the following codes, but they do not give me the same graph as shown in the image:
x = as.vector(Chu_data2)
y = .00072 / .22153 / .24098 / .40163 / .54893 / .46412 / .46350 * x
plot(Chu_data2, type = "p", col = "black")
lines(x,y,type = "l", col = "black", new = "F")
x = as.vector(M4)
y = .00072 / .22153 / .24098 / .40163 / .54893 / .46412 / .46350 * x
plot(M4, type = "p", col = "black")
lines(x,y,type = "l", col = "black", new = "F")
I would appreciate any help; once again this is a plot of the eigenvalues shown in this table principal components
Thank you in advance!