I need to do matlab code to solve the system of equation by using Runge-Kutta method 4th order but in every try i got problem and can't solve the derivative is (d^2 y)/dx^(2) +dy/dx-2y=0 , h=0.1 Y(0)=1 , dy/dx (0)=-2
{clear all, close all, clc
%{
____________________TASK:______________________
Solve the system of differential equations below
in the interval 0<x<1, with stepsize h = 0.1.
y= y1 y(0)=0
y3= 2y1-y2 y2(0)=-2
_______________________________________________
%}
h = 0.1;
x = 0:h:1
N = length(x);
y = zeros(N,1);
y3 = zeros(N,1);
g = @(x, y, y1, y2) y1;
f = @(x, y, y1, y2) 2*y1-y2;
y1(1) = 0;
y2(1) =-2;
for i = 1:(N-1)
k_1 = x(i)+y(i)
k_11=g(x(i),y,y(i))
k_2 = (x(i)+h/2)+(y(i)+0.5*h*k_1)
k_22=g((x(i)+0.5*h),y,(y(i)+0.5*h*k_11))
k_3 = (x(i)+h/2)+(y(i)+0.5*h*k_2)
k_33=g((X(i)+0.5*h),y,(y(i)+0.5*h*k_22));
k_4 = (x(i)+h)+(y(i)+h*k_33)
k_44=g((x(i)+h),y,(y(i)+k_33*h));
y3(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h
y3(:,i)=y;
end
Answer_Matrix = [x' y3 ];}