-1

Sometimes, usually after convolution layer, there can be found shapes in form ( width, height, depth) where depth is a number of filters from convolution operation.

I want to reproduce GoogleNet inception module and "squish" (width, height, depth) to (width, height, f(depth)) where f would produce a scalar value.

I know there is CNTKLib.Splice but that is not exactly what I need. I need to get a weighted sum of all values in the column with (x, y) coordinates.

How can that be done in C# API?

edit: added code sample

    public static void PrintOutputDims(Function source)
    {
        var shape = source.Output.Shape;

        var sb = new string[shape.Rank];
        for (var i = 0; i < shape.Rank; ++i)
        {
            sb[i] = ($"dim{i}: {shape[i]}");
        }

        Console.WriteLine(string.Join(", ", sb));
    }

    static void Main(string[] args)
    {
        var variable = CNTKLib.InputVariable(NDShape.CreateNDShape(new[] { 100, 100, 20 }), DataType.Float, "source");
        PrintOutputDims(variable); // dim0: 100, dim1: 100, dim2: 20
        var squished = Squish(variable);
        PrintOutputDims(variable); // dim0: 100, dim1: 100, dim2: 1
    }

How Squish function may be implemented?

Erik Philips
  • 53,428
  • 11
  • 128
  • 150
Dmitrii
  • 321
  • 6
  • 17
  • 2
    It would be awesome if you could provide a [mcve] with sample inputs and expected outputs you are trying to create. As is, this feels like a XY Problem (https://meta.stackexchange.com/questions/66377/what-is-the-xy-problem). – mjwills Feb 08 '18 at 20:44
  • does this helps? – Dmitrii Feb 08 '18 at 21:10

2 Answers2

2

You can use ReduceSum/ReduceLogSum/ReduceMean/etc. with axis = 2

KeD
  • 221
  • 1
  • 3
2

the answer would be something like this:

    public static Function SpatialReduceWeightedSum(this Function source, DeviceDescriptor device)
    {
        var sourceShape = source.Output.Shape;
        if (sourceShape.Rank != 3)
        {
            throw new ArgumentException("exected rank = 3 but was: " + sourceShape.Rank);
        }

        var sourceDimensions = sourceShape.Dimensions;
        var blocksCount = sourceDimensions[0] * sourceDimensions[1];
        var temporaryDimensions = new[]
                                      {
                                          blocksCount,
                                          sourceDimensions[2]
                                      };
        var temporatyShape = NDShape.CreateNDShape(temporaryDimensions);
        var reshaped = CNTKLib.Reshape(source, temporatyShape);

        var initializer = CNTKLib.ConstantInitializer(1d);
        var axis0 = new Axis(0);
        var axis1 = new Axis(1);
        var axisVector = new AxisVector() { axis0 };
        var weightedSums = new Variable[blocksCount];
        for (var i = 0; i < blocksCount; i++)
        {
            var beginIndex = new IntVector() { i };
            var endIndex = new IntVector() { i + 1 };
            var block = CNTKLib.Slice(reshaped, axisVector, beginIndex, endIndex);
            var blockShape = NDShape.CreateNDShape(block.Output.Shape.Dimensions.Reverse());
            var blockParameters = new Parameter(blockShape, DataType.Float, initializer, device);

            var weightedBlock = CNTKLib.Times(block, blockParameters);
            weightedSums[i] = CNTKLib.ReduceSum(weightedBlock, axis1);
        }

        var combined = CNTKLib.Splice(new VariableVector(weightedSums), axis0);

        var flatShapeDimensions = new[]
                                      {
                                          sourceDimensions[0],
                                          sourceDimensions[1],
                                          1
                                      };
        var flatShape = NDShape.CreateNDShape(flatShapeDimensions);

        return CNTKLib.Reshape(combined, flatShape);
    }
Dmitrii
  • 321
  • 6
  • 17