I've read a few Q&As about this, but am still not sure I understand, why the coefficients from glmnet and caret models based on the same sample and the same hyper-parameters are slightly different. Would greatly appreciate an explanation!
I am using caret to train a ridge regression:
library(ISLR)
Hitters = na.omit(Hitters)
x = model.matrix(Salary ~ ., Hitters)[, -1] #Dropping the intercept column.
y = Hitters$Salary
set.seed(0)
train = sample(1:nrow(x), 7*nrow(x)/10)
library(caret)
set.seed(0)
train_control = trainControl(method = 'cv', number = 10)
grid = 10 ^ seq(5, -2, length = 100)
tune.grid = expand.grid(lambda = grid, alpha = 0)
ridge.caret = train(x[train, ], y[train],
method = 'glmnet',
trControl = train_control,
tuneGrid = tune.grid)
ridge.caret$bestTune
# alpha is 0 and best lambda is 242.0128
Now, I use the lambda (and alpha) found above to train a ridge regression for the whole data set. At the end, I extract the coefficients:
ridge_full <- train(x, y,
method = 'glmnet',
trControl = trainControl(method = 'none'),
tuneGrid = expand.grid(
lambda = ridge.caret$bestTune$lambda, alpha = 0)
)
coef(ridge_full$finalModel, s = ridge.caret$bestTune$lambda)
Finally, using exactly the same alpha and lambda, I try to fit the same ridge regression using glmnet package - and extract coefficients:
library(glmnet)
ridge_full2 = glmnet(x, y, alpha = 0, lambda = ridge.caret$bestTune$lambda)
coef(ridge_full2)