First, to be clear:
In order to begin issuing vkCmd*s, you need to begin a render pass.
That is not necessarily true. In command buffers You can record multiple different commands, all of which begin with vkCmd
. Only some of these commands need to recorded inside a render pass - the ones that are connected with drawing. There are some commands, which cannot be called inside a render pass (like for example dispatching compute shaders). But this is just a side note to sort things out.
Next thing - mentioned triple buffering. In Vulkan the way images are displayed depends on the supported present mode. Different hardware vendors, or even different driver versions, may offer different present modes, so on one hardware You may get present mode that is most similar to triple buffering (MAILBOX), but on other You may not get it. And present mode impacts the way presentation engine allows You to acquire images from a swapchain, and then displays them on screen. But as You noted, You cannot depend on the order of returned images, so You shouldn't design Your application to behave as if You always have the same behavior on all platforms.
But to answer Your question - the easiest, naive, way is to call vkAcquireNextImageKHR()
at the beginning of a frame, record command buffers that use an image returned by it, submit those command buffers and present the image. You can create framebuffers on demand, just before You need to use it inside a command buffer: You create a framebuffer that uses appropriate image (the one associated with index returned by the vkAcquireNextImageKHR()
function) and after command buffers are submitted and when they stop using it, You destroy it. Such behavior is presented in the Vulkan Cookbook: here and here.
More appropriate way would be to prepare framebuffers for all available swapchain images and take appropriate framebuffer during a frame. But You need to remember to recreate them when You recreate swapchain.
More advanced scenarios would postpone swapchain acquiring until it is really needed. vkAcquireNextImageKHR()
function call may block Your application (wait until image is available) so it should be called as late as possible when You prepare a frame. That's why You should record command buffers that don't need to reference swapchain images first (for example those that render geometry into a G-buffer in deferred shading algorithms). After that when You want to display image on screen (like for example some postprocessing technique) You just take the approach describe above: acquire an image, prepare appropriate command buffer(s) and present the image.
You can also pre-record command buffers that reference particular swapchain images. If You know that the source of Your images will always be the same (like the mentioned G-buffer), You can have a set of command buffers that always perform some postprocess/copy-like operations from this data to all swapchain images - one command buffer per swapchain image. Then, during the frame, if all of Your data is set, You acquire an image, check which pre-recorded command buffer is appropriate and submit the one associated with acquired image.
There are multiple ways to achieve what You want, all of them depend on many factors - performance, platform, specific goal You want to achieve, type of operations You perform in Your application, synchronization mechanisms You implemented and many other things. You need to figure out what best suits You. But in the end - You need to reference a swapchain image in command buffers if You want to display image on screen. I'd suggest starting with the easiest option first and then, when You get used to it, You can improve Your implementation for higher performance, flexibility, easier code maintenance etc.