I have a graph where the extrapolation does not match the initial interpolation. I would like the heatmap to fill the entire image.
First, the interpolation code:
library(akima)
library(reshape2)
xmin <- signif(min(CBLo2$MD1))
xmax <- signif(max(CBLo2$MD1))
ymin <- signif(min(CBLo2$MD2))
ymax <- signif(max(CBLo2$MD2))
gridint <- 100
fld <- with(CBLo2, interp(x = MD1, y = MD2, z = Abundance,
xo=seq(xmin, xmax, length=gridint), yo=seq(ymin, ymax, length=gridint) ))
df <- melt(fld$z, na.rm = TRUE)
names(df) <- c("MD1", "MD2", "Abundance")
df$MD1 <- fld$x[df$MD1]
df$MD2 <- fld$y[df$MD2]
contour(fld) # test plot
I won't post the entire ggplot code (used for the plot below), just that needed to produce the heatmap:
ggplot() +
geom_tile(inherit.aes=FALSE,data = df, aes(x = MD1, y = MD2,fill = Abundance)) +
scale_fill_continuous(name = "Rain (mm)", low = "yellow", high = "green")
However, when I try to extrapolate the data (following examples from other posts), I get the following plot, which does not match the first well at all:
fld <- with(CBLo2, interp(x = MD1, y = MD2, z = Abundance, extrap=TRUE, linear=FALSE,
xo=seq(xmin, xmax, length=gridint), yo=seq(ymin, ymax, length=gridint) ))
Here is the data:
Abundance MD1 MD2
9 -0.59042 0.76793119
42 -0.48544284 -0.09465043
13 0.51250586 -0.24599322
84 -0.30857525 -0.21529624
2 0.90449257 0.679926
16 0.24536209 0.24016424
52 -0.43144002 -0.75474149
4 1.23830339 -0.11985391
37 -1.10235817 0.33886773
79 0.01757236 -0.59635386
What am I doing wrong? How can I make the extrapolation more accurate?