I have a simple example below (which doesn't work) that attempts to do multivariate fit using the default algorithm (Gauss-Newton). I get the error: "Error in nlsModel(formula, mf, start, wts) : singular gradient matrix at initial parameter estimates".
## Defining the two independent x variables, and the one dependent y variable.
x1 = 1:100*.01
x2 = (1:100*.01)^2
y1 = 2*x1 + 0.5*x2
## Putting into a data.frame for nls() funcion.
df = data.frame(x1, x2, y1)
## Starting parameters: a = 2.1, b = 0.4 (and taking c = 0)
fit_results <-nls(y1 ~ x1*a + x2*b +c, data=df, start=c(a=2.1, b=0.4, c=0))
Note: even when I set a = 2, and b = 0.5 above, I still get the same error message.