The method fit of the model train the model for one pass through the data you gave it, however because of the limitations in memory (especially GPU memory), we can't train on a big number of samples at once, so we need to divide this data into small piece called mini-batches (or just batchs). The methode fit of keras models will do this data dividing for you and pass through all the data you gave it.
However, sometimes we need more complicated training procedure we want for example to randomly select new samples to put in the batch buffer each epoch (e.g. GAN training and Siamese CNNs training ...), in this cases we don't use the fancy an simple fit method but instead we use the train_on_batch method. To use this methode we generate a batch of inputs and a batch of outputs(labels) in each iteration and pass it to this method and it will train the model on the whole samples in the batch at once and gives us the loss and other metrics calculated with respect to the batch samples.