this is one of those just try it things.
int a;
int b=1;
int foo(int x) {
int c=2;
static float d=1.5;
int e;
e=x+2;
return(e);
}
first thing without optimization.
arm-none-eabi-gcc -c so.c -o so.o
arm-none-eabi-objdump -D so.o
arm-none-eabi-ld -Ttext=0x1000 -Tdata=0x2000 so.o -o so.elf
arm-none-eabi-ld: warning: cannot find entry symbol _start; defaulting to 0000000000001000
arm-none-eabi-objdump -D so.elf > so.list
do worry about the warning, needed to link to see that everything found a home
Disassembly of section .text:
00001000 <foo>:
1000: e52db004 push {r11} ; (str r11, [sp, #-4]!)
1004: e28db000 add r11, sp, #0
1008: e24dd014 sub sp, sp, #20
100c: e50b0010 str r0, [r11, #-16]
1010: e3a03002 mov r3, #2
1014: e50b3008 str r3, [r11, #-8]
1018: e51b3010 ldr r3, [r11, #-16]
101c: e2833002 add r3, r3, #2
1020: e50b300c str r3, [r11, #-12]
1024: e51b300c ldr r3, [r11, #-12]
1028: e1a00003 mov r0, r3
102c: e28bd000 add sp, r11, #0
1030: e49db004 pop {r11} ; (ldr r11, [sp], #4)
1034: e12fff1e bx lr
Disassembly of section .data:
00002000 <b>:
2000: 00000001 andeq r0, r0, r1
00002004 <d.4102>:
2004: 3fc00000 svccc 0x00c00000
Disassembly of section .bss:
00002008 <a>:
2008: 00000000 andeq r0, r0, r0
as a disassembly it tries to disassemble data so ignore that (the andeq next to 0x2008 for example).
The a variable is global and uninitialized so it lands in .bss (typically...a compiler can choose to do whatever it wants so long as it implements the language correctly, doesnt have to have something called .bss for example, but gnu and many others do).
b is global and initialized so it lands in .data, had it been declared as const it might land in .rodata depending on the compiler and what it offers.
c is a local non-static variable that is initialized, because C offers recursion this needs to be on the stack (or managed with registers or other volatile resources), and initialized each run. We needed to compile without optimization to see this
1010: e3a03002 mov r3, #2
1014: e50b3008 str r3, [r11, #-8]
d is what I call a local global, it is a static local so it lives outside the function, not on the stack, alongside the globals but with local access only.
I added e to your example, this is a local not initialized, but then used. Had I not used it and not optimized there probably would have been space allocated for it but no initialization.
save x on the stack (per this calling convention x enters in r0)
100c: e50b0010 str r0, [r11, #-16]
then load x from the stack, add two, save as e on the stack. read e from
the stack and place in the return location for this calling convention which is r0.
1018: e51b3010 ldr r3, [r11, #-16]
101c: e2833002 add r3, r3, #2
1020: e50b300c str r3, [r11, #-12]
1024: e51b300c ldr r3, [r11, #-12]
1028: e1a00003 mov r0, r3
For all architectures, unoptimized this is somewhat typical, always read variables from the stack and put them back quickly. Other architectures have different calling conventions with respect to where the incoming parameters and outgoing return value live.
If I optmize (-O2 on the gcc line)
Disassembly of section .text:
00001000 <foo>:
1000: e2800002 add r0, r0, #2
1004: e12fff1e bx lr
Disassembly of section .data:
00002000 <b>:
2000: 00000001 andeq r0, r0, r1
Disassembly of section .bss:
00002004 <a>:
2004: 00000000 andeq r0, r0, r0
b is a global, so at the object level a global space has to be reserved for it, it is .data, optimization doesnt change that.
a is also global and still .bss, because at the object level it was declared such so allocated in case another object needs it. The linker doesnt remove these.
Now c and d are dead code they dont do anything they need no storage so
c is no longer allocated space on the stack nor is d allocated any .data
space.
We have plenty of registers for this architecture for this calling convention for this code, so e does not need any memory allocated on the
stack, it comes in in r0 the math can be done with r0 and then it is returned in r0.
I know I didnt tell the linker where to put .bss by telling it .data it put .bss in the same space without complaint. I could have put -Tbss=0x3000 for example to give it its own space or just done a linker script. Linker scripts can play havoc with the typical results, so beware.
Typical, but there might be a compiler with exceptions:
non-constant globals go in .data or .bss depending on whether they are initialized during the declaration or not.
If const then perhaps .rodata or .text depending (or .data or .bss would technically work)
non-static locals go in general purpose registers or on the stack as needed (if not completely optimized away).
static locals (if not optimized away) live with globals but are not globally accessible they just get allocated space in .data or .bss like the globals do.
parameters are governed completely by the calling convention used by that compiler for that target. Just because arm or mips or other may have written down a convention doesnt mean a compiler has to use it, only if they claim to support some convention or standard should they then attempt to comply. For a compiler to be useful it needs a convention and stick to it whatever it is, so that both caller and callee of a function know where to get parameters and to return a value. Architectures with enough registers will often have a convention where some few number of registers are used for the first so many parameters (not necessarily one to one) and then the stack is used for all other parameters. likewise a register may be used if possible for a return value. Some architectures due to lack of gprs or other, use the stack in both directions. or the stack in one and a register in the other. You are welcome to seek out the conventions and try to read them, but at the end of the day the compiler you are using, if not broken follows a convention and by setting up experiments like the one above you can see the convention in action.
Plus in this case optimizations.
void more_fun ( unsigned long long );
unsigned fun ( unsigned int x, unsigned long long y )
{
more_fun(y);
return(x+1);
}
If I told you that arm conventions typically use r0-r3 for the first few parameters you might assume that x is in r0 and r1 and r2 are used for y and we could have another small parameter before needing the stack, well
perhaps older arm, but now it wants the 64 bit variable to use an even then an odd.
00000000 <fun>:
0: e92d4010 push {r4, lr}
4: e1a04000 mov r4, r0
8: e1a01003 mov r1, r3
c: e1a00002 mov r0, r2
10: ebfffffe bl 0 <more_fun>
14: e2840001 add r0, r4, #1
18: e8bd4010 pop {r4, lr}
1c: e12fff1e bx lr
so r0 contains x, r2/r3 contain y and r1 was passed over.
the test was crafted to not have y as dead code and to pass it to another function we can see where y was stored on the way into fun and way out to more_fun. r2/r3 on the way in, needs to be in r0/r1 to call more fun.
we need to preserve x for the return from fun. one might expect that x would land on the stack, which unoptimized it would, but instead save a register that the convention has stated will be preserved by functions (r4) and use r4 throughout the function or at least in this function to store x. A performance optimization, if x needed to be touched more than once memory cycles going to the stack cost more than register accesses.
then it computes the return and cleans up the stack, registers.
IMO it is important to see this, the calling convention comes into play for some variables and others can vary based on optimization, no optimization they are what most folks are going to state off hand, .bss, .data (.text/.rodata), with optimization then it depends if if the variable survives at all.