I need to calculate coefficients of a multiple logistic regression using sklearn:
X =
x1 x2 x3 x4 x5 x6
0.300000 0.100000 0.0 0.0000 0.5 0.0
0.000000 0.006000 0.0 0.0000 0.2 0.0
0.010000 0.678000 0.0 0.0000 2.0 0.0
0.000000 0.333000 1.0 12.3966 0.1 4.0
0.200000 0.005000 1.0 0.4050 1.0 0.0
0.000000 0.340000 1.0 15.7025 0.5 0.0
0.000000 0.440000 1.0 8.2645 0.0 4.0
0.500000 0.055000 1.0 18.1818 0.0 4.0
The values of y
are categorical in range [1; 4].
y =
1
2
1
3
4
1
2
3
This is what I do:
import pandas as pd
from sklearn import linear_modelion
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
h = .02
logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(X, y)
# print the coefficients
print(logreg.intercept_)
print(logreg.coef_)
However, I get 6 columns in the output of logreg.intercept_
and 6 columns in the output of logreg.coef_
How can I get 1 coefficient per feature, e.g. a - f
values?
y = a*x1 + b*x2 + c*x3 + d*x4 + e*x5 + f*x6
Also, probably I am doing something wrong, because y_pred = logreg.predict(X)
gives me the value of 1
for all rows.