3

I am extracting Ngrams from a Spark 2.2 dataframe column using Scala, thus (trigrams in this example):

val ngram = new NGram().setN(3).setInputCol("incol").setOutputCol("outcol")

How do I create an output column that contains all of 1 to 5 grams? So it might be something like:

val ngram = new NGram().setN(1:5).setInputCol("incol").setOutputCol("outcol")

but that doesn't work. I could loop through N and create new dataframes for each value of N but this seems inefficient. Can anyone point me in the right direction, as my Scala is ropey?

schoon
  • 2,858
  • 3
  • 46
  • 78

1 Answers1

5

If you want to combine these into vectors you can rewrite Python answer by zero323.

import org.apache.spark.ml.feature._
import org.apache.spark.ml.Pipeline

def buildNgrams(inputCol: String = "tokens", 
                 outputCol: String = "features", n: Int = 3) = {

  val ngrams = (1 to n).map(i =>
      new NGram().setN(i)
        .setInputCol(inputCol).setOutputCol(s"${i}_grams")
  )

  val vectorizers = (1 to n).map(i =>
     new CountVectorizer()
      .setInputCol(s"${i}_grams")
      .setOutputCol(s"${i}_counts")
  )

  val assembler = new VectorAssembler()
    .setInputCols(vectorizers.map(_.getOutputCol).toArray)
    .setOutputCol(outputCol)

  new Pipeline().setStages((ngrams ++ vectorizers :+ assembler).toArray)

}

val df = Seq((1, Seq("a", "b", "c", "d"))).toDF("id", "tokens")

Result

buildNgrams().fit(df).transform(df).show(1, false)
// +---+------------+------------+---------------+--------------+-------------------------------+-------------------------+-------------------+-------------------------------------+
// |id |tokens      |1_grams     |2_grams        |3_grams       |1_counts                       |2_counts                 |3_counts           |features                             |
// +---+------------+------------+---------------+--------------+-------------------------------+-------------------------+-------------------+-------------------------------------+
// |1  |[a, b, c, d]|[a, b, c, d]|[a b, b c, c d]|[a b c, b c d]|(4,[0,1,2,3],[1.0,1.0,1.0,1.0])|(3,[0,1,2],[1.0,1.0,1.0])|(2,[0,1],[1.0,1.0])|[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]|
// +---+------------+------------+---------------+--------------+-------------------------------+-------------------------+-------------------+-------------------------------------+

This could be simpler with a UDF:

val ngram = udf((xs: Seq[String], n: Int) => 
  (1 to n).map(i => xs.sliding(i).filter(_.size == i).map(_.mkString(" "))).flatten)

spark.udf.register("ngram", ngram)

val ngramer =  new SQLTransformer().setStatement(
  """SELECT *, ngram(tokens, 3) AS ngrams FROM __THIS__"""
)

ngramer.transform(df).show(false)
// +---+------------+----------------------------------+
// |id |tokens      |ngrams                            |
// +---+------------+----------------------------------+
// |1  |[a, b, c, d]|[a, b, c, d, ab, bc, cd, abc, bcd]|
// +---+------------+----------------------------------+
Maziyar
  • 1,913
  • 2
  • 18
  • 37
Alper t. Turker
  • 34,230
  • 9
  • 83
  • 115