I have data in a S3 bucket in directory /data/vw/
. Each line is of the form:
| abc:2 def:1 ghi:3 ...
I want to convert it to the following format:
abc abc def ghi ghi ghi
The new converted lines should go to S3 in directory /data/spark
Basically, repeat each string the number of times that follows the colon. I am trying to convert a VW LDA input file to a corresponding file for consumption by Spark's LDA library.
The code:
import org.apache.spark.{SparkConf, SparkContext}
object Vw2SparkLdaFormatConverter {
def repeater(s: String): String = {
val ssplit = s.split(':')
(ssplit(0) + ' ') * ssplit(1).toInt
}
def main(args: Array[String]) {
val inputPath = args(0)
val outputPath = args(1)
val conf = new SparkConf().setAppName("FormatConverter")
val sc = new SparkContext(conf)
val vwdata = sc.textFile(inputPath)
val sparkdata = vwdata.map(s => s.trim().split(' ').map(repeater).mkString)
val coalescedSparkData = sparkdata.coalesce(100)
coalescedSparkData.saveAsTextFile(outputPath)
sc.stop()
}
}
When I run this (as a Spark EMR job in AWS), the step fails with exception:
18/01/20 00:16:28 ERROR ApplicationMaster: User class threw exception: org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory s3a://mybucket/data/spark already exists
org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory s3a://mybucket/data/spark already exists
at org.apache.hadoop.mapred.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:131)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1119)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1096)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1096)
at ...
The code is run as:
spark-submit --class Vw2SparkLdaFormatConverter --deploy-mode cluster --master yarn --conf spark.yarn.submit.waitAppCompletion=true --executor-memory 4g s3a://mybucket/scripts/myscalajar.jar s3a://mybucket/data/vw s3a://mybucket/data/spark
I have tried specifying new output paths (/data/spark1
etc), ensuring that it does not exist before the step is run. Even then it is not working.
What am I doing wrong? I am new to Scala and Spark so I might be overlooking something here.