I have data that I want to fit with polynomials. I have 200,000 data points, so I want an efficient algorithm. I want to use the numpy.polynomial
package so that I can try different families and degrees of polynomials. Is there some way I can formulate this as a system of equations like Ax=b? Is there a better way to solve this than with scipy.minimize?
import numpy as np
from scipy.optimize import minimize as mini
x1 = np.random.random(2000)
x2 = np.random.random(2000)
y = 20 * np.sin(x1) + x2 - np.sin (30 * x1 - x2 / 10)
def fitness(x, degree=5):
poly1 = np.polynomial.polynomial.polyval(x1, x[:degree])
poly2 = np.polynomial.polynomial.polyval(x2, x[degree:])
return np.sum((y - (poly1 + poly2)) ** 2 )
# It seems like I should be able to solve this as a system of equations
# x = np.linalg.solve(np.concatenate([x1, x2]), y)
# minimize the sum of the squared residuals to find the optimal polynomial coefficients
x = mini(fitness, np.ones(10))
print fitness(x.x)