I need to fit x-y data with a model, which is non-analytic. I have a function f(x)
that calculates the model for each x
numerically, but there is no analytical equation. For the fit, I use optim
in R. I minimise RMS between the model and the data. It works well and returns reasonable parameters.
I would like to find confidence intervals (or at least standard errors) on the best-fitting parameters. I found on internet that this can be done from the Hessian matrix, but only if maximising log-likelihood function. I don't know how to do this, all I have is x
, y
and f(x)
from which I find RMS. Alas, I have no good way of estimating errors on y
.
How can I find confidence intervals on my fit parameters?
Edit: perhaps an example in R might help explaining what I'm asking for. This example uses a simple analytic function to fit the data, in my real case the function is non-analytic, so I cannot use, e.g., nls
.
set.seed(666)
# generate data
x <- seq(100) / 100
y <- 0.5 * x + rnorm(100, sd = 0.03) + 0.2
# function to fit
f <- function(x, a, b) {
a * x + b
}
# error function to minimise: RMS
errfun <- function(par, x, y) {
a <- par[1]
b <- par[2]
err <- sqrt(sum((f(x, a, b) - y)^2))
}
# use optim to fit the model to the data
par <- c(1, 0)
res <- optim(par, errfun, gr=NULL, x, y)
# best-fitting parameters
best_a <- res$par[1]
best_b <- res$par[2]
The best fitting parameters are a = 0.50 and b = 0.20. I need to find 95% confidence intervals on these.