It is my first time doing logistic regressions and I am currently trying to teach myself how to find the odds ratio. I got my coefficients from r as shown below.
(Intercept) totalmins
0.2239254 1.2424020
To exponentiate the regression coefficient I did the following:
exp1.242/exp1.242+1 = 0.77
Really not sure if this is the correct process or not.
Any advice on how I would go about calculating odds ratio would be greatly appreciated
detection- 1/0 data if animal was detected at site
total mins- time animal spent at site
here's the output
glm(formula = detection ~ totalmins, family = binomial(link = "logit"),
data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.81040 -0.63571 0.00972 0.37355 1.16771
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.49644 0.81818 -1.829 0.0674 .
totalmins 0.21705 0.08565 2.534 0.0113
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 41.194 on 33 degrees of freedom
Residual deviance: 21.831 on 32 degrees of freedom
(1 observation deleted due to missingness)
AIC: 25.831
Number of Fisher Scoring iterations: 8