During ingest json data from kafka and save them as parquet files which be loaded into hive, I met the same issue mentioned in Flink BucketingSink with Custom AvroParquetWriter create empty file . Does anyone know how to resolve it? Thank you. I used Apache Flink 1.4.0 + HDFS 2.7.3
Asked
Active
Viewed 3,421 times
1 Answers
2
You can directly implement the Writer
interface. It could look the following way:
import org.apache.flink.util.Preconditions;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.avro.AvroParquetWriter;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import java.io.IOException;
/**
* Parquet writer.
*
* @param <T>
*/
public class ParquetSinkWriter<T extends GenericRecord> implements Writer<T> {
private static final long serialVersionUID = -975302556515811398L;
private final CompressionCodecName compressionCodecName = CompressionCodecName.SNAPPY;
private final int pageSize = 64 * 1024;
private final String schemaRepresentation;
private transient Schema schema;
private transient ParquetWriter<GenericRecord> writer;
private transient Path path;
private int position;
public ParquetSinkWriter(String schemaRepresentation) {
this.schemaRepresentation = Preconditions.checkNotNull(schemaRepresentation);
}
@Override
public void open(FileSystem fs, Path path) throws IOException {
this.position = 0;
this.path = path;
if (writer != null) {
writer.close();
}
writer = createWriter();
}
@Override
public long flush() throws IOException {
Preconditions.checkNotNull(writer);
position += writer.getDataSize();
writer.close();
writer = createWriter();
return position;
}
@Override
public long getPos() throws IOException {
Preconditions.checkNotNull(writer);
return position + writer.getDataSize();
}
@Override
public void close() throws IOException {
if (writer != null) {
writer.close();
writer = null;
}
}
@Override
public void write(T element) throws IOException {
Preconditions.checkNotNull(writer);
writer.write(element);
}
@Override
public Writer<T> duplicate() {
return new ParquetSinkWriter<>(schemaRepresentation);
}
private ParquetWriter<GenericRecord> createWriter() throws IOException {
if (schema == null) {
schema = new Schema.Parser().parse(schemaRepresentation);
}
return AvroParquetWriter.<GenericRecord>builder(path)
.withSchema(schema)
.withDataModel(new GenericData())
.withCompressionCodec(compressionCodecName)
.withPageSize(pageSize)
.build();
}
}

Till Rohrmann
- 13,148
- 1
- 25
- 51
-
Thanks for your suggestion. But I still met the following exception. Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: /wikipedia-edits-flink/partitionKey=2018-01-10--12-10/_part-5-0.in-progress for client 127.0.0.1 already exists ... at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInternal(FSNamesystem.java:2563) ... at flink.ParquetSinkWriter.createWriter(ParquetSinkWriter.java:98) at flink.ParquetSinkWriter.flush(ParquetSinkWriter.java:58) at org.apache.flink.streaming.connectors.fs.bucketing.BucketingSink.snapshotState(BucketingSink.java:688) – Casel Chen Jan 10 '18 at 04:11
-
Can it write parquet file without avro schema but through Apache Flink's DataFrame[T] type infer that? – Casel Chen Jan 11 '18 at 10:22
-
I think you can get the `Schema` from the `AvroSerializer` which you can instantiate via the `AvroTypeInfo`. – Till Rohrmann Jan 11 '18 at 14:23
-
@till reading this implementation and the bucketingSink implementation, is it correct to say that a hard failure will cause a complete loss of all the data currently in the parquetWriter cache? I guess this as not flushing data and not storing it in any state makes it impossible for the job to restore it... – enrico Feb 17 '20 at 09:46