Edited
First of all: We know the Inheritance definition and we can find a lot of examples in SO and internet. But, I think we should look in-depth and a little more scientific.
Note 0:
Clarification about Inheritance and Instance terminology.
First let me name Development Scope for development life cycle, when we are modeling and programming our system and Runtime Scope for sometimes our system is running.
We have Classes and modeling and developing them in Development Scope. And Objects in Runtime Scope. There is no Object in Development Scope.
And in Object Oriented, the definition of Instance is: Creating an Object from a Class.
On the other hand, when we are talking about classes and object, we should clarify our Viewpoint about Development Scope and Runtime Scope.
So, with this introduction, I want to clarify Inheritance:
Inheritance is a relationship between Classes, NOT Objects.
Inheritance can exist in Development Scope, not in Runtime Scope. There is no Inheritance in Runtime Scope.
After running our project, there is no relationship between parent and child (If there is only Inheritance between a child class and parent class). So, the question is: What is super.invokeMethod1()
or super.attribute1
?, they are not the relationship between child and parent. All attributes and methods of a parent are transmitted to the child and that is just a notation to access the parts that transmitted from a parent.
Also, there are not any Objects in Development Scope. So there are not any Instances in Development scope. It is just Is-A and Has-A relationship.
Therefore, when we said:
I would say FileNotFoundException
is a instance of an IOException
We should clarify about our Scope (Development and Runtime).
For example, If FileNotFoundException
is an instance of IOException
, then what is the relationship between a specific FileNotFoundException
exception at runtime (the Object) and FileNotFoundException
. Is it an instance of instance?
Note 1:
Why we used Inheritance? The goal of inheritance is to extending parent class functionalities (based on the same type).
- This extension can happen by adding new attributes or new methods.
- Or overriding existing methods.
- In addition, by extending a parent class, we can reach to reusability too.
- We can not restrict the parent class functionality (Liskov Principle)
- We should be able to replace the child as parent in the system (Liskov Principle)
- and etc.
Note 2:
The Width and Depth of Inheritance Hierarchies
The Width and Depth of Inheritance can be related to many factors:
- The project: The complexity of the project (Type Complexity) and it's architecture and design. The size of the project, the number of classes and etc.
- The team: The expertise of a team in controlling the complexity of the project.
- and etc.
However, we have some heuristics about it. (Object-Oriented Design Heuristics, Arthur J. Riel)
In theory, inheritance hierarchies should be deep—the deeper, the better.
In practice, inheritance hierarchies should be no deeper than
an average person can keep in his or her short-term memory. A popular
value for this depth is six.
Note that they are heuristics and based on short-term memory number (7). And maybe the expertise of a team affect this number. But in many hierarchies like organizational charts is used.
Note 3:
When we are using Wrong Inheritance?
Based on :
- Note 1: the goal of Inheritance (Extending parent class functionalities)
- Note 2: the width and depth of Inheritance
In this conditions we use wrong inheritance:
We have some classes in an inheritance hierarchy, without extending parent class functionalities. The extension should be reasonable and should be enough to make a new class. The reasonable means from Observer's point of view. The observer can be Project Architect or Designer (Or other Architects and Designers).
We have a lot of classes in the inheritance hierarchy. It calls Over-Specialization. Some reasons may cause this:
- Maybe we did not consider Note 1 (Extending parent functionalities)
- Maybe our Modularization (packaging) is not correct. And we put many system use cases in one package and we should make Design Refactoring.
They are other reasons, but not exactly related this answer.
Note 4:
What should we do? When we are using Wrong Inheritance?
Solution 1: We should perform Design Refactoring to check the value of classes in order to Extending parent Functionality. In this refactoring, maybe many classes of system deleted.
Solution 2: We should perform Design Refactoring to modularization. In this refactoring, maybe some classes of our package transmitted to other packages.
Solution 3: Using the Composition over Inheritance.
We can use this technique for many reasons. Dynamic Hierarchy is one of popular reasons that we prefer Composition instead of Inheritance.
see Tim Boudreau (of Sun) notes here:
Object hierarchies don't scale
Solution 4: use instances over Subclasses
This question is about this technique. Let me named it instances over Subclasses.
When we can use it:
(Tip 1): Consider Note 1, when we do not exactly extend the parent class functionalities. Or the extensions are not reasonable and enough.
(Tip 2:) Consider Note 2, If we have a lot of subclasses (semi or identical classes) that extends the parent class a little and we can control this extension without inheritance. Note that it is not easy to say that. We should prove that it is not violating other Object Oriented Principles like Open-Close Principle.
What should we do?
Martin Fowler recommend (Book 1 page 232 and Book 2 page 251):
Replace Subclass with Fields, Change the methods to superclass fields and eliminate the subclasses.
We can use other techniques like enum
as the question mentioned.