Suppose I have a 27 columns data frame. The first column is the ID, and the rest of columns (A to Z) are just data. I want to take out all the rows whose A to Z columns are NA. How should I do it? The straightforward way is just
data %>%
filter(!(is.na(A) & is.na(B) .... & is.na(Z)))
Is there a more efficient or easier way to do it?
This question is different from This one because I want to exclude rows whose value are ALL NA, and keep the rows whose value are partially NA.