Lets put this problem into perspective.
In programming theory there exists concepts of an object's create & destroy and a procedure's try & finally. Both ultimately deal with resource management but they pivot on different things.
- With objects we pivot on the potentially long-living tree of objects and variables referenced by the object pointer.
- With procedures we pivot on the usually temporary objects and variables existing in the scope of the procedure call (the notable exception is main)
Now, depending on the procedure we might need to spawn a series of resources which, if the procedure is interrupted by a fatal error, must rollback all spawned resources in reverse order. Quite often this is easiest achieved by creating objects dedicated to managing their respective resource. Ada.Finalization becomes quite useful here.
But this can be overkill, and there can be arguments made against this technique on a case-by-case basis. So if we are interested in self-containing resource management to a procedure and making use of a C++-style finally keyword, consider the following.
I have often initially been pleased by the promise of convenience using finally only to be disappointed by how complicated the code can turn out after making use of it. Nesting is required for complex rollback operations, and many times the process is not linear, requiring logic to decide exactly how to roll back depending on how far we made it through the initialization. The nested block structure corners you to use linear logic. Thus when you need something more complicated then you are seriously considering making use of goto.
I've gone through this enough times to realize that, as appetizing as OOP-style finalize can be with what I mentioned, a true try & finally can be achieved in Ada without all the headaches as demonstrated in the following example. Note, it's far from perfect, but I think the good outweighs the bad with this strategy. What I especially like about this strategy is how explicit the finalize process becomes, all steps labeled and checked against Ada's type system, well organized and easy to manage. The C++-style try & finally scatters this kind of code, and Ada's Finalize hide's it and makes it harder to control the higher-level order of fail-over logic.
procedure Proc is
type Init_Stages_All is (Do_Null, Do_Place, Do_Pour, Do_Drink);
subtype Init_Stages is Init_Stages_All range Do_Place .. Do_Drink;
Init_Stage : Init_Stages_All := Do_Null;
procedure Initialize_Next is
begin
Init_Stage := Init_Stages_All'Succ(Init_Stage);
case Init_Stage is
when Do_Place => ...
when Do_Pour => ...
when Do_Drink => ...
when Do_Null => null;
end case;
end Initialize_Next;
procedure Finally is
begin
for Deinit_Stage in reverse Init_Stage .. Init_Stages'Last loop
case Deinit_Stage is
when Do_Place => ...
when Do_Pour => ...
when Do_Drink => ...
end case;
end loop;
end Finally;
begin
Initialize_Next; -- Do_Place
...
Initialize_Next; -- Do_Pour
...
Initialize_Next; -- Do_Drink
...
Finally;
exception
when E : others =>
...
Finally;
raise;
end Proc;
On a final note, this strategy also makes it easier to deal with finalization exceptions. I'd suggest creating a procedure in Finally that is called when an exception is raised and recursively call Finally by manipulating the Init_Stage as well as interject any additional fail-over logic there.