I need to solve a diferential equation of the form w'=g(t,w(t))
where g is defined as follows
g[t_, w_] := {f1[t, {w[[3]], w[[4]]}], f2[t, {w[[3]], w[[4]]}], w[[1]],w[[2]]};
and f1, f2 are
f1[t_, y_] := Sum[\[Mu][[i]] (s[[i]] - y)/Norm[s[[i]] - y]^2, {i, 1, 5}][[1]];
f2[t_, y_] := Sum[\[Mu][[i]] (s[[i]] - y)/Norm[s[[i]] - y]^2, {i, 1, 5}][[2]];
Everything else is defined properly and is not the cause of the error. Yet when I use
sout = NDSolve[{y'[tvar] == g[tvar, y[tvar]],
y[0] == {Cos[Pi/6], Sin[Pi/6], 0, 0}}, y, {tvar, 0, 2}, Method -> "ExplicitRungeKutta"];
I get the error
Part::partw: Part 3 of y[tvar] does not exist.
Part::partw: Part 4 of y[tvar] does not exist.
I have looked in other questions and none of them solved this problem.