I have two sets of data taken from experiments, and they look very similar, except there is a horizontal offset between them, which I believe is due to some bugs in the instrument setting. Suppose they have the form y1=f(x1)
and y2=f(x2)= f(x1+c)
, what's the best way to determine c
so that I can take into account the offset to superimpose two data sets to become one data set?
Edit: let's say my data sets (index 1 and 2) have the form:
x1 = 0:0.2:10;
y1 = sin(x1)
x2 = 0:0.3:10;
y2 = sin(x2+0.5)
Of course, the real data will have some noise, but say the best fit functions have the above forms. How do I find the offset c=0.5
? I have looked into the cross-correlation, but I'm not sure if they can handle two data sets with different number of data (and different step sizes). Also, what if the offset values actually fall between two data points? Cross-correlation only returns the index of the data in the array, not something in between if I understand correctly.