I understand that TensorFlow supports distributed training.
I find num_clones
in train_image_classifier.py
so that I can use multiple GPUs locally.
python $TF_MODEL_HOME/slim/train_image_classifier.py \
--num_clones=2
--train_dir=${TRAIN_DIR} \
--dataset_name=imagenet \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=vgg_19 \
--batch_size=32 \
--max_number_of_steps=100
How do I use multiple GPUs on different hosts?