I've got three data frames, dfLON, dfMOS, and dfATA. Each features the same variables: y is a continuous variable, and a, b, and c are binary categorical, and there is also some NA
.
I'd like to build separate linear regression models, one for each data set.
With my current code I've managed to make a list of data frames and pass it into lm(). But is there are more concise way to view the results than eg fitdfLON <- DfList[[1]]
? I've provided three data frames in this example but I actually have ~25 so I'd have to type it 25 times!
Any help would be much appreciated.
Starting point (dfs):
dfLON <- data.frame(y=c(1.23,2.32,3.21,2.43),a=c(1,NA,1,2),b=c(1,1,2,2),c=c(2,1,2,1))
dfMOS <- data.frame(y=c(4.56,6.54,4.43,5.78),a=c(2,1,2,1),b=c(2,1,1,2),c=c(1,2,1,2))
dfATA <- data.frame(y=c(1.22,6.54,3.23,4.23),a=c(2,2,2,1),b=c(1,2,1,2),c=c(1,NA,1,2))
Current code:
Mylm <- function(df){
fit <- lm(y ~ a + b + c, data=df)
return(fit)
}
DfList <- lapply(list(dfLON, dfMOS, dfATA), Mylm)
fitdfLON <- DfList[[1]]
fitdfMOS <- DfList[[2]]
fitdfATA <- DfList[[3]]