I'm tinkering around with a cellular automaton and my movement detection function is acting really strangely. I'm 80% sure it's my implementation but I have no idea where the issue is. Could someone take a look and enlighten me since I've spent the better part of 7H trying to get it to work and it won't:
private int[] cellularSearch(short xPos, short yPos)
{
// the center position is our current position; the others are potentially free positions
byte[][] positions = new byte[][]{{0,0,0},{0,1,0},{0,0,0}};
int[] result = new int[2];
byte strike=0;
int dice0=0, dice1=0;
while(strike<9)
{
dice0 = r.nextInt(3)-1;
result[0] = xPos + dice0;
if((result[0] >= 0)
&& (result[0] < img.getWidth()))
{
dice1 = r.nextInt(3)-1;
result[1] = yPos + dice1;
if((result[1] >= 0)
&& (result[1] < img.getHeight()))
{
if((positions[dice1+1][dice0+1] != 1)) // if this isn't our own cell and wasn't tried before
{
if(img.getRGB(result[0], result[1]) == Color.white.getRGB()) // if the new cell is free
{
return result;
}
}
positions[dice1+1][dice0+1]=1; // we need to use +1 to create a correlation between the linkage in the matrix and the actual positions around our cell
strike++;
}
}
}
}
The code works and it correctly identifies when a pixel is white and returns the position for it. My problem is the distribution of the results. Given that I'm using Random both for the row and the column, I was expecting a near equal distribution over all possible locations, but what happens is that this code seems to prefer the cell right above the coordinates being fed in (it hits it ~3x as much as the other ones) and the one right below the coordinates (it hits it ~2x as much as the others).
When I start my program and all my pixels slowly move towards the top of the window on EVERY run (vs true randomness with my old lengthy code which was 3x as long), so there's gotta be an error in there somewhere. Could someone please lend a hand?
Thank you in advance!
EDIT: Thank you everyone for the effort! Sorry for the non-compiling code but I extracted the main purpose of the function while cutting out a ton of commented code (my other approaches to implementing this function). Locally the code has the return statement and it runs. I'll slowly go through all your answers in the next few hours (gonna have dinner soon).
EDIT2: I tried what @DodgyCodeException and @tevemadar suggested and made a list with all the 8 positions, then shuffle them each time I enter the function, and then iterate through them, trying each one in part. Still the position exactly above and below the current cell are selected most. I'm baffled. This is my old super-spaghetti code that I've written for this function and it worked perfectly with no errors, equal distribution, and (oddly enough) it's the most efficient implementation that I've tried out of everything mentioned here. After I'm done with lunch and filing some paperwork I'll thoroughly study it (it's been ~ 2 years since I wrote it) to see why it works so well. If anyone still has ideas, I'm fully open.
boolean allRan=false;
int lastDice=0, anteLastDice=0, dice = r.nextInt(3)+1;
//the initial dice usage is for selecting the row on which we'll operate:
//dice = 1 or 3 -> we operate above or under our current cell; dice = 2 -> we operate on the same row
while(!allRan)
{
if((dice==1) || (dice==3))
{
int i= r.nextInt(3);
if(((xPos-1+i) < img.getWidth())
&& ((xPos-1+i) >= 0))
{
if(((yPos-1) >= 0)
&& (img.getRGB(xPos-1+i, yPos-1) == Color.white.getRGB())
&& (dice==1))
{
result[0] = xPos-1+i;
result[1] = yPos-1;
above++;
endTime = (int) System.currentTimeMillis();
section4Runtime += (double) (endTime - startTime) / 1000;
return result;
}
else if(((yPos+1) < img.getHeight())
&& (img.getRGB(xPos-1+i, yPos+1) == Color.white.getRGB())
&& (dice==3))
{
result[0] = xPos-1+i;
result[1] = yPos+1;
below++;
endTime = (int) System.currentTimeMillis();
section4Runtime += (double) (endTime - startTime) / 1000;
return result;
}
}
// if this section is reached, it means that: the initial dice roll didn't find a free cell, or the position was out of bounds, or the dice rolled 2
// in this section we do a dice reroll (while remembering and avoiding our previous values) so that we cover all dice rolls
if(dice==1)
{
if(lastDice==0)
{
lastDice=dice;
dice += r.nextInt(2)+1; // we incrmeent randomly towards 2 or 3.
}
else
{
if(lastDice==2)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice=3;
}
else
{
allRan=true;
}
}
else if(lastDice==3)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice=2;
}
else
{
allRan=true;
}
}
}
}
else // dice is 3
{
if(lastDice==0)
{
lastDice=dice;
dice -= r.nextInt(2)+1; // we decrement randomly towards 2 or 1.
}
else
{
if(lastDice==2)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice=1;
}
else
{
allRan=true;
}
}
else if(lastDice==1)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice=2;
}
else
{
allRan=true;
}
}
}
}
}
if(dice==2)
{
int i=0;
i += r.nextInt(2)==0?-1:1;
if(((xPos+i) < img.getWidth())
&& ((xPos+i) >= 0)
&& (img.getRGB(xPos+i, yPos) == Color.white.getRGB()))
{
result[0] = xPos+i;
result[1] = yPos;
leveled++;
endTime = (int) System.currentTimeMillis();
section4Runtime += (double) (endTime - startTime) / 1000;
return result;
}
// same as above: a dice reroll (with constrictions)
if(lastDice==0)
{
lastDice=dice;
dice+= r.nextInt(2)==0?-1:1; // randomly chose if you decrement by 1 or increment by 1
}
else
{
if(lastDice==1)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice =3;
}
else
{
allRan=true;
}
}
else if(lastDice==3)
{
if(anteLastDice==0)
{
anteLastDice= lastDice;
lastDice=dice;
dice =1;
}
else
{
allRan=true;
}
}
}
}
}
return result;
After much thought, I eventually figured it out. All the ideas that we all had were violating a fundamental "rule" of the first implementation that I was using: the first implementation was trying a random position on one of the 3 lines, then moving on to the next lines (without coming back to try the other positions on that line). Example: if the algo selected the line above, it would randomly try the top-left corner to see if it's free; if it wasn't then it would try the same line as the current cell and the line below (again, just with 1 of their possible positions) without coming back. All our ideas were iterating through all possibilities around the cell, which meant that it was inevitable to have the top and bottom line have more hits than the middle (since top and bottom have 3 possible points each while middle has only 2). Also, when there were holes in the field, the cells most likely to fill it up were the ones that were moving diagonally (which in the end is up or down) or those directly moving up or down, since those moving sideways only had the options left/ right. The only mystery that will remain unsolved is why (using our proposed implementations) the model would generally use the point exactly above our current cell. I have no idea why it loves going straight up most of the time with that implementation. Nevertheless, the new algorithm (which reflects the old one, but is much lighter) is:
boolean[] lines = new boolean[]{false, false, false};
byte checks =0;
while(checks < 3) // just 3 tries in total
{
dice = r.nextInt(3);
if(lines[dice]== false)
{
lines[dice] = true; // just 1 try per line
// calculated here since we reuse dice below
result[1] = yPos - 1 + dice; // will be above if dice==0; will be below if dice==2; same line if dice==1
if((dice == 0) || (dice == 2)) // top/bottom line
{dice = r.nextInt(3)-1;}
else if(dice == 1) // middle line
{dice = r.nextInt(2)==0?-1:1;} // we exclude the middle point since that's our current position
result[0] = xPos + dice; // logic is calculated above and just applied here
checks++;
}
if((result[0] >= 0)
&& (result[0] < img.getWidth())
&& (result[1] >= 0)
&& (result[1] < img.getHeight()))
{
if (img.getRGB(result[0], result[1]) == Color.white.getRGB()) // if the new cell is free
{
return result;
}
}
}
result[0] = -1; // in case we get here, reset the value so it's not used
This brings the code down from 167 lines to 33 lines (and makes it MUCH more readable). I have no idea who to select as the best solution. Please suggest if you have any ideas.