1) Is a Turing machine M that accepts the language L = {ε}, accepting no entry?
In one hand, I think it can be false because the empty word could be an entry, but in another i think this could possibly be an indecidable problem.
2) Is every Turing machine whose language is decidable stops on any input ?
Same idea, intuitively I would have say yes, due to the definition of decidable, but I don't know, something trouble me.
3) Is the language of the palindromes decidable whatever the aphabet ?
For this one, I have almost no doubt that it's False, because with Rice's Theorem we can prove that, this probleme is indecidable.