Could someone explain why the following code generates the output of array([ 0.59813887, 0.69314718], dtype=float32)
? For example, numpy.log(0.5) = 0.69314718
, but how does the 0.598138 come from ?
import tensorflow as tf
res1 = tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=[1, 0], logits=[[0.4, 0.6], [0.5, 0.5]], name=None)
res2 = tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=[0, 1], logits=[[0.4, 0.6], [0.5, 0.5]], name=None)
res3 = tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=[1, 0], logits=[[0.6, 0.4], [0.5, 0.5]], name=None)
sess = tf.Session()
sess.run(res1)