I am trying to grasp the basic concept of invertible and non-invertible matrices.
I created a random non-singular square matrix
S <- matrix(rnorm(100, 0, 1), ncol = 10, nrow = 10)
I know that this matrix is positive definite (thus invertible) because when I decompose the matrix S
into its eigenvalues, their product is positive.
eig_S <- eigen(S)
eig_S$values
[1] 3.0883683+0.000000i -2.0577317+1.558181i -2.0577317-1.558181i 1.6884120+1.353997i 1.6884120-1.353997i
[6] -2.1295086+0.000000i 0.1805059+1.942696i 0.1805059-1.942696i -0.8874465+0.000000i 0.8528495+0.000000i
solve(S)
According to this paper, we can compute the inverse of a non-singular matrix by its SVD too.
Where
(where U and V are eigenvectors and D eigenvalues, please do correct me if I am wrong).
Indeed, I can run the formula in R:
s <- svd(S)
s$v%*%solve(diag(s$d))%*%t(s$u)
Which produces exactly the same result as solve(S)
.
My first question is:
1) Are s$d
indeed represent the eigenvalues of S
? Because s$d
and eig_S$values
are quite different.
Now the second part,
If I create a singular matrix
I <- matrix(rnorm(100, 0, 1), ncol = 5, nrow = 20)
I <- I%*%t(I)
eig_I <- eigen(I)
eig_I$values
[1] 3.750029e+01 2.489995e+01 1.554184e+01 1.120580e+01 8.674039e+00 3.082593e-15 5.529794e-16 3.227684e-16
[9] 2.834454e-16 5.876634e-17 -1.139421e-18 -2.304783e-17 -6.636508e-17 -7.309336e-17 -1.744084e-16 -2.561197e-16
[17] -3.075499e-16 -4.150320e-16 -7.164553e-16 -3.727682e-15
The solve function will produce an error
solve(I)
system is computationally singular: reciprocal condition number = 1.61045e-19
So, again according to the same paper we can use the SVD
i <- svd(I)
solve(i$u %*% diag(i$d) %*% t(i$v))
which produces the same error.
Then I tried to use the Cholesky decomposition for matrix inversion
Conj(t(I))%*%solve(I%*%Conj(t(I)))
and again I get the same error.
Could someone please explain where am I using the equations wrong?
I know that for matrix I%*%Conj(t(I))
, the determinant of the eigenvalue matrix is positive but the matrix is not a full rank due to the initial multiplication that I did.
j <- eigen(I%*%Conj(t(I)))
det(diag(j$values))
[1] 3.17708e-196
qr(I %*% Conj(t(I)))$rank
[1] 5
UPDATE 1: Following the comments bellow, and after going through the paper/Wikipedia page again. I used these two codes, which they produce some results but I am not sure about their validity. The first example seems more believable. The SVD solution
i$v%*%diag(1/i$d)%*%t(i$u)
and the Cholesky
Conj(t(I))%*%(I%*%Conj(t(I)))^(-1)
I am not sure if I interpreted the two sources correctly though.