Here's my solution which borders on brute force from the OP's perspective. It's not bothered by order (threw in a random shuffle to confirm that) and there can be non-matching elements in the list, as well as other independent matches. Assumes overlap means not a proper subset but independent strings with elements in common at the start and end:
from collections import defaultdict
from random import choice, shuffle
def overlap(a, b):
""" get the maximum overlap of a & b plus where the overlap starts """
overlaps = []
for i in range(len(b)):
for j in range(len(a)):
if a.endswith(b[:i + 1], j):
overlaps.append((i, j))
return max(overlaps) if overlaps else (0, -1)
lst = ['SGALWDV', 'GALWDVP', 'ALWDVPS', 'LWDVPSP', 'WDVPSPV', 'NONSEQUITUR']
shuffle(lst) # to verify order doesn't matter
overlaps = defaultdict(list)
while len(lst) > 1:
overlaps.clear()
for a in lst:
for b in lst:
if a == b:
continue
amount, start = overlap(a, b)
overlaps[amount].append((start, a, b))
maximum = max(overlaps)
if maximum == 0:
break
start, a, b = choice(overlaps[maximum]) # pick one among equals
lst.remove(a)
lst.remove(b)
lst.append(a[:start] + b)
print(*lst)
OUTPUT
% python3 test.py
NONSEQUITUR SGALWDVPSPV
%
Computes all the overlaps and combines the largest overlap into a single element, replacing the original two, and starts process over again until we're down to a single element or no overlaps.
The overlap()
function is horribly inefficient and likely can be improved but that doesn't matter if this isn't the type of matching the OP desires.