Cheapest way is just check the bounding extents/rectangles of the two shapes (line and circle) prior to the more expensive intersection test. Chances are that you can even compute the extents on the fly of the line/circle, not precompute, and still get a decent performance boost unless your line/circle intersection is already dirt cheap.
A really effective approach but one that requires a bit more work is to just create a grid. You can use the bounding rectangles computed above to cheaply see which grid cells your shapes intersect.
struct GridNode
{
// Points to the index of the next node in the grid cell
// or -1 if we're at the end of the singly-linked list.
int next_node;
// Points to the index of the shape being stored.
int shape;
};
struct GridCell
{
// Points to the first node or -1 if the cell is empty.
int first_node;
};
struct Grid
{
// Stores the cells in the grid. This is just illustrative
// code. You should dynamically allocate this with adjustable
// grid widths and heights based on your needs.
struct GridCell cells[grid_width * grid_height];
// Stores the nodes in the grid (one or more nodes per shape
// inserted depending on how many it intersects). This is
// a variable-sized array you can realloc needed (ex: double
// the size when you're out of room).
struct GridNode* nodes;
// The maximum number of nodes we can store before realloc.
int node_cap;
// The number of nodes inserted so far. realloc when this
// exceeds node_cap.
int node_num;
};
... something to this effect. This way, most of the time you can insert elements to the grid doing nothing more than just some integer (emulating pointers) operations and adding some grid node entries to this variable-sized nodes
array. Heap allocations occur very infrequently.
I find in practice this outperforms quad-trees if you have many dynamic elements moving from one cell to the next like in a 2D video game where everything is moving around all the time while we need rapid collision detection, and can even rival quad-trees for searching if you are careful with the memory layout of the nodes to minimize cache misses when iterating through grid cells that intersect the shape you are testing against. You can even do a post-pass after the grid is constructed to rearrange the memory of each node for cache-friendly list iteration based on how efficient you need the intersection searches to be. If you want to get fancy, you can use Bresenham to figure out exactly what grid cells a line intersects, e.g., but given the quadratic complexity of what you're doing, you stand to improve exponentially without bothering with that and just doing it in a very simple way with bounding rectangles.
Basically to find an intersection, first grab the bounding rect of the shape. Then see which cells it intersects in the grid. Now check for intersection with the shapes contained in the grid cells the original shape intersects. This way you can work towards constant-time complexity except for gigantic shapes (worst-case with O(n)) which are hopefully a rare case.
I even find use for these in 3 dimensions when things are moving around a lot. They're often cheaper than the octree, BVH, and kd-tree variants which provide extensive search acceleration but at the cost of more expensive builds and updates, and if you use this strategy of a singly-linked list for each grid cell which doesn't have to individually allocate nodes, you can store it in a very reasonable amount of memory even with the 3rd dimension. I wouldn't use a 3-dimensional version of this for raytracing, but it can be very useful for 3D collision detection, like detecting collision between particles moving every single frame.