I am building a GAN (Generative Adversarial Network). I need to use tf.nn.conv2d, but it does not work properly. Instead tf.layers.conv2d works fine, it generates images since iteration 300. The network with tf.nn only produces noise.
is there a difference that i'm missing?
conv = tf.layers.conv2d(input_layer, filters=128, kernel_size=5, strides=2, padding="same",kernel_initializer=tf.random_normal_initializer(stddev=0.02), activation=None, use_bias=False)
vs
w0 = tf.get_variable('w0', initializer=tf.random_normal_initializer(stddev=0.02), shape=[5, 5, 3, 128])
conv = tf.nn.conv2d(input_layer, w0, strides=[1, 2, 2, 1], padding="SAME")