I'm doing feature selection to train my Machine Learning (ML) models using correlation. I trained the each model(SVM, NN,RF) with all features and did a 10-fold cross validation to obtain mean accuracy score value. Then I removed features which has a zero correlation coefficient (which implies there is no relationship between feature and class) and trained the each model(SVM, NN,RF) with all features and did a 10-fold cross validation to obtain mean accuracy score value.
Basically my objective is to do feature selection based on accuracy scores I get in above two scenarios. But I'm not sure whether this is a good approach for feature selection.
Also I want to do a grid search to identify best model parameters. but I'm getting confused with GridSearchCV in Scikit learn API. Since it also do a cross validation (default 3 folds) can I use best_score_ value obtained doing a grid search in above two scenarios to determine what are the good features for model training?
Please advice me on this confusion, or please suggest me with a good reference to read.
Thanks in advance