Here is the code that can help you to achieve what you want. The code below displays activations of 2 convolution layers of LeNet. The code gets as an input MNIST dataset, which is 28x28 grayscale images (downloaded automatically), and produces images as activations.
You can grab outputs from executor. To see the list of available outputs use names(executor$ref.outputs)
The result of each output is available as a matrix with values in [-1; 1] range. The dimensions of the matrix depends on parameters of the layer. The code use these matrices to display as greyscaled images where -1 is white pixel, 1 - black pixel. (most of the code is taken from https://github.com/apache/incubator-mxnet/issues/1152 and massaged a little bit)
The code is a self sufficient to run, but I have noticed that if I build the model second time in the same R session, the names of ouputs get different indices, and later the code fails because the expected names of outputs are hard coded. So if you decide to create a model more than once, you will need to restart R session.
Hope it helps and you can adjust this example to your case.
library(mxnet)
download.file('https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/data/mnist_csv.zip', destfile = 'mnist_csv.zip')
unzip('mnist_csv.zip', exdir = '.')
train <- read.csv('train.csv', header=TRUE)
data.x <- train[,-1]
data.x <- data.x/255
data.y <- train[,1]
val_ind = 1:100
train.x <- data.x[-val_ind,]
train.x <- t(data.matrix(train.x))
train.y <- data.y[-val_ind]
val.x <- data.x[val_ind,]
val.x <- t(data.matrix(val.x))
val.y <- data.y[val_ind]
train.array <- train.x
dim(train.array) <- c(28, 28, 1, ncol(train.x))
val.array <- val.x
dim(val.array) <- c(28, 28, 1, ncol(val.x))
# input layer
data <- mx.symbol.Variable('data')
# first convolutional layer
convLayer1 <- mx.symbol.Convolution(data=data, kernel=c(5,5), num_filter=30)
convAct1 <- mx.symbol.Activation(data=convLayer1, act_type="tanh")
poolLayer1 <- mx.symbol.Pooling(data=convAct1, pool_type="max", kernel=c(2,2), stride=c(2,2))
# second convolutional layer
convLayer2 <- mx.symbol.Convolution(data=poolLayer1, kernel=c(5,5), num_filter=60)
convAct2 <- mx.symbol.Activation(data=convLayer2, act_type="tanh")
poolLayer2 <- mx.symbol.Pooling(data=convAct2, pool_type="max",
kernel=c(2,2), stride=c(2,2))
# big hidden layer
flattenData <- mx.symbol.Flatten(data=poolLayer2)
hiddenLayer <- mx.symbol.FullyConnected(flattenData, num_hidden=500)
hiddenAct <- mx.symbol.Activation(hiddenLayer, act_type="tanh")
# softmax output layer
outLayer <- mx.symbol.FullyConnected(hiddenAct, num_hidden=10)
LeNet1 <- mx.symbol.SoftmaxOutput(outLayer)
# Group some output layers for visual analysis
out <- mx.symbol.Group(c(convAct1, poolLayer1, convAct2, poolLayer2, LeNet1))
# Create an executor
executor <- mx.simple.bind(symbol=out, data=dim(val.array), ctx=mx.cpu())
# Prepare for training the model
mx.set.seed(0)
# Set a logger to keep track of callback data
logger <- mx.metric.logger$new()
# Using cpu by default, but set gpu if your machine has a supported one
devices=mx.cpu(0)
# Train model
model <- mx.model.FeedForward.create(LeNet1, X=train.array, y=train.y,
eval.data=list(data=val.array, label=val.y),
ctx=devices,
num.round=1,
array.batch.size=100,
learning.rate=0.05,
momentum=0.9,
wd=0.00001,
eval.metric=mx.metric.accuracy,
epoch.end.callback=mx.callback.log.train.metric(100, logger))
# Update parameters
mx.exec.update.arg.arrays(executor, model$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(executor, model$aux.params, match.name=TRUE)
# Select data to use
mx.exec.update.arg.arrays(executor, list(data=mx.nd.array(val.array)), match.name=TRUE)
# Do a forward pass with the current parameters and data
mx.exec.forward(executor, is.train=FALSE)
# List of outputs available.
names(executor$ref.outputs)
# Plot the filters of a sample from validation set
sample_index <- 99 # sample number in validation set. Change it to if you want to see other samples
activation0_filter_count <- 30 # number of filters of the "convLayer1" layer
par(mfrow=c(6,5), mar=c(0.1,0.1,0.1,0.1)) # number of rows x columns in output
dim(executor$ref.outputs$activation0_output)
for (i in 1:activation0_filter_count) {
outputData <- as.array(executor$ref.outputs$activation0_output)[,,i,sample_index]
image(outputData,
xaxt='n', yaxt='n',
col=gray(seq(1,0,-0.1)))
}
activation1_filter_count <- 60 # number of filters of the "convLayer2" layer
dim(executor$ref.outputs$activation1_output)
par(mfrow=c(6,10), mar=c(0.1,0.1,0.1,0.1)) # number of rows x columns in output
for (i in 1:activation1_filter_count) {
outputData <- as.array(executor$ref.outputs$activation1_output)[,,i,sample_index]
image(outputData,
xaxt='n', yaxt='n',
col=gray(seq(1,0,-0.1)))
}
As a result you should see the following images for a validation sample #2 (use RStudio left and right arrows to navigate between them).

