I have bucketized a dataframe, i.e. bucketBy
and saveAsTable
.
If I load it with spark.read.parquet
, I don't benefit from optimization (no shuffling).
scala> spark.read.parquet("${spark-warehouse}/tab1").groupBy("a").count.explain(true)
== Physical Plan ==
*HashAggregate(keys=[a#35117], functions=[count(1)], output=[a#35117, count#35126L])
+- Exchange hashpartitioning(a#35117, 200)
+- *HashAggregate(keys=[a#35117], functions=[partial_count(1)], output=[a#35117, count#35132L])
+- *FileScan parquet [a#35117] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/Users/yann.moisan/projects/teads/data/spark-warehouse/tab1], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<a:int>
I need to load it with spark.table
to benefit from optimization.
scala> spark.table("tab1").groupBy("a").count().explain(true)
== Physical Plan ==
*HashAggregate(keys=[a#149], functions=[count(1)], output=[a#149, count#35140L])
+- *HashAggregate(keys=[a#149], functions=[partial_count(1)], output=[a#149, count#35146L])
+- *FileScan parquet default.tab1[a#149] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/Users/yann.moisan/projects/teads/data/spark-warehouse/tab1], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<a:int>
I don't understand why Spark do not detect automatically the bucketization in the first case, by using the filename for example that is a bit different in this case part-00007-ca117fc2-2552-4693-b6f7-6b27c7c4bca7_00001.snappy.parquet
?