Trying to build a single output regression model, but there seems to be problem in the last layer
inputs = Input(shape=(48, 1))
lstm = CuDNNLSTM(256,return_sequences=True)(inputs)
lstm = Dropout(dropouts[0])(lstm)
#aux_input
auxiliary_inputs = Input(shape=(48, 7))
auxiliary_outputs = TimeDistributed(Dense(4))(auxiliary_inputs)
auxiliary_outputs = TimeDistributed(Dense(7))(auxiliary_outputs)
#concatenate
output = keras.layers.concatenate([lstm, auxiliary_outputs])
output = TimeDistributed(Dense(64, activation='linear'))(output)
output = TimeDistributed(Dense(64, activation='linear'))(output)
output = TimeDistributed(Dense(1, activation='linear'))(output)
model = Model(inputs=[inputs, auxiliary_inputs], outputs=[output])
I am new to keras... I am getting the following error
ValueError: Error when checking target: expected time_distributed_5 to have 3 dimensions, but got array with shape (14724, 1)