I wish to use the function gls in the R package nlme to analyse a set of nested spatial samples, in which many samples overlap in at least some spatial coordinates. I want to account for non-independence in the response variable (the thing I'm measuring in each spatial sample) using either a corStruct or pdMat object, but I'm confused about how to do this.
I have generated a covariance matrix that should encode all the information about non-independence between spatial samples. Each row/column is a distinct spatial sample, the diagonal contains the total number of sampling units captured by each spatial sample, and the off-diagonal elements contain counts of sampling units shared between spatial samples.
I think I should use the nlme function gls while specifying a correlation structure, possibly using a corSymm or pdMat object. But I've only seen examples where the correlation structure in gls is specified via a formula. How can I use the covariance matrix that I've created?