Is there a way to access the data after performing a preprocessing step using a wrapper in mlr? Here a stripped version of the code:
library(mlr)
library(mlbench)
data <- BreastCancer[, 2:11]
lrn <- makeLearner(cl = "classif.ranger",
predict.type = "prob",
fix.factors.prediction = TRUE,
importance = "permutation")
lrn <- makeImputeWrapper(lrn, classes = list(integer = imputeMedian(),
numeric = imputeHist(),
factor = imputeMode()))
lrn <- makeRemoveConstantFeaturesWrapper(lrn, na.ignore = TRUE)
classif.task <- makeClassifTask(data = rawdata, target = "Target", positive = "1")
model <- train(lrn, classif.task)
The code defines a learner, removes constant features and performs imputation. Is there a way to see how the data will look like after the removal of the constant features or, more interestingly, after the imputation?