I am trying to run a series of operations on a json file using Dask and read_text but I find that when I check Linux Systems Monitor, only one core is ever used at 100%. How do I know if the operations I am performing on a Dask Bag are able to be parallelized? Here is the basic layout of what I am doing:
import dask.bag as db
import json
js = db.read_text('path/to/json').map(json.loads).filter(lambda d: d['field'] == 'value')
result = js.pluck('field')
result = result.map(cleantext, tbl=tbl).str.lower().remove(exclusion).str.split()
result.map(stopwords,stop=stop).compute()
The basic premise is to extract text entries from the json file and then perform some cleaning operations. This seems like something that can be parallelized since each piece of text could be handed off to a processor since each text and the cleaning of each text is independent of any of the other. Is this an incorrect thought? Is there something I should be doing differently?
Thanks.