I'm using a dataset with all decimal values and timestamp which has the following features :
1. sno
2. timestamp
3. v1
4. v2
5. v3
I've the data for 5 months with timestamps for every minute. I need to predict if v1, v2 ,v3 is being used at any time in the future. The values of v1,v2,v3 are between 0 to 25.
How can I do this ?
I've used binary classification before but I've no clue how to process with the multi-label problem to predict. I've used the code below all the time . How should I train the model and how should I use v1,v2,v3 to fit into 'y'?
X_train, X_test, y_train, y_test = train_test_split(train, y, test_size=0.2)
Data:
sno power voltage v1 v2 v3 timestamp
1 3.74 235.24 0 16 18 2006-12-16 18:03:00
2 4.928 237.14 0 37 16 2006-12-16 18:04:00
3 6.052 236.73 0 37 17 2006-12-16 18:05:00
4 6.752 237.06 0 36 17 2006-12-16 18:06:00
5 6.474 237.13 0 37 16 2006-12-16 18:07:00
6 6.308 235.84 0 36 17 2006-12-16 18:08:00
7 4.464 232.69 0 37 16 2006-12-16 18:09:00
8 3.396 230.98 0 22 18 2006-12-16 18:10:00
9 3.09 232.21 0 12 17 2006-12-16 18:11:00
10 3.73 234.19 0 27 17 2006-12-16 18:12:00
11 2.308 234.96 0 1 17 2006-12-16 18:13:00
12 2.388 236.66 0 1 17 2006-12-16 18:14:00
13 4.598 235.84 0 20 17 2006-12-16 18:15:00
14 4.524 235.6 0 9 17 2006-12-16 18:16:00
15 4.202 235.49 0 1 17 2006-12-16 18:17:00